Matemáticas para las telecomunicaciones Código:  81.520    :  6
Consulta de los datos generales   Descripción   Conocimientos previos   Objetivos y competencias   Contenidos   Consulta de los recursos de aprendizaje de los que dispone la asignatura   Recursos de aprendizaje y herramientas de apoyo   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
ATENCIÓN: Esta información recoge los apartados del plan docente de la asignatura durante el último semestre con docencia. Al iniciar el periodo de matrícula, podrás consultar el calendario y modelo de evaluación para el siguiente semestre en Trámites / Matrícula / Horarios de las pruebas de evaluación final.

En el ámbito de las telecomunicaciones, a menudo tenemos la necesidad de modelar un tipo de procesos denominados no determinísticos. Analizar cuántas visitas recibe un servidor de Internet en una franja horaria concreta, es un ejemplo de ello. Este tipo de procesos, denominados estocásticos, no se pueden caracterizar mediante reglas que permitan predecir con exactitud su evolución. Sí podemos, en cambio, predecir con un cierto grado de certidumbre cuál será el comportamiento del proceso.

Esta asignatura se estructura en dos bloques bien determinados, primero la teoría de probabilidad y después, los procesos estocásticos, necesarios para poder tratar este tipo de fenómenos.

Teoría de la probabilidad

En Ingeniería de Telecomunicación, el tratamiento digital de la señal en la manipulación de las señales de información es fundamental. Para tratar el conjunto de resultados posibles de una experiencia aleatoria, hace falta introducir el concepto de probabilidad con todas las herramientas necesarias para llegar a conclusiones válidas sobre el problema que estamos estudiando. En esta primera parte de la asignatura se introducen, mediante ejemplos, los tipos de problemas más habituales en telecomunicaciones donde es necesario utilizar la teoría de la probabilidad.

Procesos estocásticos

En ingeniería, a parte de tratar magnitudes aleatorias representadas por variables y vectores aleatorios, es necesario estudiar cómo varían estas magnitudes en el tiempo. En esta segunda parte de la asignatura se generaliza el concepto de vector aleatorio que se ha visto en la parte de probabilidad y se estudian las funciones aleatorias (procesos estocásticos). Se define su distribución estadística, qué parámetros las caracterizan, cuáles son los ejemplos más importantes y cómo se transforman al pasar por sistemas lineales.

 

Amunt

Es necesario haber cursado Matemáticas I (Álgebra) y Matemàticas II (Análisis).

Amunt

Cuando el alumno haya trabajado el primer bloque de la asignatura, debe ser capaz de clasificar, dentro de este contexto, un problema dado, plantearlo y resolverlo aplicando los conceptos y procedimientos más adecuados.

Objetivos específicos:

- Saber resolver problemas que requieren la aplicación de técnicas de contar.

- Saber resolver problemas de cálculo básico de probabilidades.

- Trabajar con variables aleatorias discretas: Binomial, Poisson y Geométrica.

- Trabajar con variables aleatorias continuas: Uniforme, Normal y Exponencial.

En el segundo bloque, el alumno ha de entender los conceptos básicos asociados a este tipo de procesos, familiarizarse con los tipos más habituales y resolver problemas concretos que aparecen habitualmente en el mundo de las telecomunicaciones.

Objetivos específicos:

- Entender el concepto de proceso estocástico. Familiaridad con algunos ejemplos básicos.

- Trabajo con procesos que dependen explícitamente de una o dos variables aleatorias. Cálculo de los parámetros de un proceso dado.

- Entender el concepto de estacionariedad.

- Obtención del espectro de potencia.

- Trabajar con procesos estocásticos gaussianos. Simulaciones

numéricas.

- Familiarizarse con el proceso de Poisson.

- Trabajar con sistemas lineales. Cálcular los parámetros transformados.

 

COMPETENCIAS


Dentro de las memorias de grado aprobadas por el Consejo de Universidades, todo ello se incluye y la siguientes competencias generales del Grado de Tecnologías de Telecomunicación:


- Conocimiento de materias básicas y tecnologías, que capacite para el aprendizaje de nuevos métodos y tecnologías, y que dote de una gran versatilidad para adaptarse a nuevas situaciones.

- Capacidad para la resolución de los problemas matemáticos que puedan plantearse en del ingeniero. Aptitud para aplicar los conocimientos sobre: ¿¿álgebra lineal, geometría, geometría diferencial, cálculo diferencial e integral, ecuaciones diferenciales y en derivadas parciales, métodos numéricos, algorítmica numérica, estadística y optimización.


Por otra parte, esta asignatura también incluye la siguiente competencia específica: "Capacidad de analizar y especificar los parámetros fundamentales de un sistema de comunicaciones".

Amunt

I Probabilidad

1. Introducción:  Técnicas de contar.
 
               1.1. Muestras ordenadas con repetición. Variaciones con repetición.

               1.2. Muestras ordenadas sin repetición. Variaciones. Permutaciones.

               1.3. Muestras no ordenadas sin repetición. Combinaciones.

               1.4. Muestras no ordenadas con repetición.

               1.5. Otros ejemplos.

2. Espacio de probabilidad.

               2.1. Experiencia aleatoria y sucesos. Operaciones básicas y propiedades.

               2.2. Definición axiomática de probabilidad. Espacio finito equiprobable.

               2.3. Probabilidad condicionada. Sucesos independientes.

               2.4. Teorema de la probabilidad total.Teorema de Bayes.

               2.5. Diagramas de árbol.

3. Variables aleatorias.

               3.1. Variable aleatoria discreta.

               3.2. Variable aleatoria continua.

               3.3. Teorema central del límite. Aplicación.

4. Funciones de variables aleatorias.

                4.1. Función de una variable aleatoria discreta.

                4.2. Funció d'una variable aleatoria continua.

                4.3. Teorema de la esperanza.

5. Vectores aleatorios.

                5.1. Vector aleatorio (X, Y ), con X e Y variables aleatorias discretas.

                5.2. Vector aleatorio (X, Y ), con X e Y variables aleatorias continuas.

                                
II Procesos estocásticos

1. Introducción a los procesos estocásticos.

               1.1. Definición de proceso estocástico.

               1.2. Procesos a tiempo continuo y a tiempo discreto.

               1.3. Procesos de estado continuo i de estado discreto.

               1.4. Ejemplos de procesos estocásticos.

2. Caracterización estadística de los procesos estocásticos.

               2.1. Funciones de densidad  y distribución de orden n.

               2.2. Parámetros de un proceso estocástico. Funciones de valor medio, autocorrelación yi autocovarianza. Potencia.

               2.3. Ejemplos de cálculo de parámetros.

3. Procesos estocásticos estacionarios.

               3.1. Estacionariedad en sentido estricto y en sentido amplio.

               3.2. Oscilaciones aleatorias.

               3.3. Cicloestacionariedad.

               3.4. Espectro de potencia de un proceso estacionario.

4. Ejemplos de procesos estocásticos.

               4.1. Procesos estocásticos gaussianos.

               4.2. El proceso estocástico de Poisson.

5. Sistemas lineales.

               5.1. Definición de sistema lineal. Determinismo, invariancia temporal.

               5.2. Parámetros de un proceso transformado linealmente.

               5.3. Ejemplo: circuito L-R.

Amunt

Matemáticas para las telecomunicacones PDF

Amunt

El texto de la asignatura es autocontenido, esto es, contiene la introducción a cada tema con ejemplos y ejercicios resueltos. En este sentido, el estudiante tiene los recursos necesarios para lograr los objetivos fijados.

Para la realización de algunas actividades se podrá hacer uso de software matemático según las indicaciones del Consultor o la Consultora.

Amunt

La Normativa académica de la UOC dispone que el proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de los ejercicios realizados.

La falta de originalidad en la autoría o el mal uso de las condiciones en las que se hace la evaluación de la asignatura es una infracción que puede tener consecuencias académicas graves.

El estudiante será calificado con un suspenso (D/0) si se detecta falta de originalidad en la autoría de alguna actividad evaluable (práctica, prueba de evaluación continua (PEC) o final (PEF), o la que se defina en el plan docente), ya sea porque ha utilizado material o dispositivos no autorizados, ya sea porque ha copiado de forma textual de internet, o ha copiado de apuntes, de materiales, manuales o artículos (sin la citación correspondiente) o de otro estudiante, o por cualquier otra conducta irregular.

La calificación de suspenso (D/0) en la evaluación continua (EC) puede conllevar la obligación de hacer el examen presencial para superar la asignatura (si hay examen y si superarlo es suficiente para superar la asignatura según indique este plan docente).

Cuando esta mala conducta se produzca durante la realización de las pruebas de evaluación finales presenciales, el estudiante puede ser expulsado del aula, y el examinador hará constar todos los elementos y la información relativos al caso.

Además, esta conducta puede dar lugar a la incoación de un procedimiento disciplinario y la aplicación, si procede, de la sanción que corresponda.

La UOC habilitará los mecanismos que considere oportunos para velar por la calidad de sus titulaciones y garantizar la excelencia y la calidad de su modelo educativo.

Amunt

Esta asignatura puede superarse únicamente mediante la realización de un examen final (presencial) (EX). La nota final de la evaluación continua (EC) complementa la nota del examen final (EX) mediante el cruce de acuerdo con la fórmula correspondiente. La fórmula de acreditación de la asignatura es la siguiente: EX + EC o EX.

 

Amunt