Álgebra lineal Código:  22.504    :  6
Consulta de los datos generales   Descripción   La asignatura en el conjunto del plan de estudios   Conocimientos previos   Información previa a la matrícula   Objetivos y competencias   Contenidos   Consulta de los recursos de aprendizaje de los que dispone la asignatura   Recursos de aprendizaje y herramientas de apoyo   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
ATENCIÓN: Este es el plan docente de la asignatura para el primer semestre del curso 2020-2021. Os servirá para planificar la matrícula. Una vez empiece la docencia, tenéis que consultarlo en el aula. (El plan docente puede estar sujeto a cambios).

Esta asignatura pretende proporcionar al estudiante una formación básica sobre temas de álgebra, como son los elementos de álgebra lineal y geometría, sistemas de ecuaciones lineales, aplicaciones lineales, descomposición en valores singulares y modelos matriciales. Estos contenidos se aplicarán en ejemplos con datos realistas para que el estudiante vea su utilidad en el campo de la ciencia de datos.   Al ser una asignatura de matemáticas, debe ayudar al estudiante en su formación científico-técnica, aportando un lenguaje y metodologías propios de las disciplinas matemáticas y científicas. Proporciona instrumentos para otras materias más directamente relacionadas con el mundo de la ciencia de datos aplicada.

Amunt


Esta asignatura forma parte de la materia "Matemáticas y estadística" del grado de ciencia de datos aplicada que junto con las asignaturas "Iniciación a las matemáticas para la ingeniería", "Métodos numéricos en la ciencia de datos", "Modelado y optimización" , "Probabilidad y estadística", "Análisis multivariante" y "Modelización e inferencia bayesiana" proporciona las bases matemáticas para asignaturas más avanzadas propias de la ciencia de datos.

Amunt

Es muy conveniente haber cursado recientemente los cursos de matemáticas correspondientes a Bachillerato o nivel equivalente.

Amunt

Esta asignatura se organiza mediante la realización de 5 actividades:

ACTIVIDAD 1
¿Por qué es importante el álgebra lineal en la ciencia de datos y cuáles son sus elementos básicos?

ACTIVIDAD 2
¿Cómo resolver problemas típicos de la ciencia de datos con sistemas de ecuaciones lineales?

ACTIVIDAD 3
¿Qué son los valores y vectores propios y para qué los utiliza Netflix?

ACTIVIDAD 4
¿Cómo afrontar la maldición de la dimensionalidad en la ciencia de datos con el análisis de componentes principales y la descomposición en valores singulares?

ACTIVIDAD 5
Como podemos modelar sistemas dinámicos con cadenas Markov tal y como lo hace el algoritmo PageRank de Google?

Las dos últimas actividades son prácticas: utilizando el lenguaje de programación R, se resolverán problemas con datos reales o realistas aplicando los conceptos teóricos desarrollados en la asignatura.

Amunt

Objetivos Generales

Esta asignatura introduce al estudiante en temas de álgebra y está orientada a futuros científicos y científicas de datos. Los objetivos generales son los siguientes:

  • Proporcionar al estudiante conocimientos y habilidades básicas del álgebra, necesarios en el aprendizaje y aplicación a disciplinas vinculadas a diferentes asignaturas de la titulación.
  • Desarrollar las capacidades del estudiante con respecto a la modelización formal y posterior resolución de problemas que pueden surgir en ámbitos diversos de la ciencia de datos.
  • Aprender a utilizar software matemático (en este curso se utilizará el programa CalcME) y lenguajes de programación (utilizaremos R) que permita al estudiante experimentar con los conceptos de forma interactiva y, también, automatizar los algoritmos de resolución manuales.


Objetivos específicos 

  • Comprender la importancia del álgebra lineal en el ámbito de la ciencia de datos.
  • Conocer y ser capaz de manipular elementos básicos de álgebra lineal (espacios vectoriales, independencia lineal, dimensión, matrices, determinantes) y de la geometría métrica (productos escalares, ortonormalidad, ángulos y distancias).
  • Ser capaz de utilizar la calculadora CalcME para resolver problemas básicos del álgebra lineal.
  • Comprender la importancia de los sistemas de ecuaciones lineales para resolver problemas típicos de la ciencia de datos.
  • Reconocer un sistema de ecuaciones lineales, aprender a expresarlo de forma matricial y saber evaluar si tiene o no solución.
  • Saber interpretar de forma geométrica un sistema de ecuaciones lineales.
  • Ser capaz de resolver sistemas de ecuaciones lineales mediante los métodos de Gauss y Cramer.
  • Comprender la dificultad de resolver un sistema de forma analítica cuando el número de incógnitas y ecuaciones es elevado, así como entender la necesidad de métodos numéricos para este tipo de sistemas.
  • Comprender la utilidad de los conceptos de aplicación lineal, vectores y valores propios en el ámbito de la ciencia de datos.
  • Conocer las aplicaciones lineales y aprender a representarlas en forma de matriz.
  • Entender el concepto de vectores y valores propios, así como la manera de calcularlos y su interpretación geométrica.
  • Ser capaz de resolver problemas de diagonalización de matrices cuadradas.
  • Ser capaz de resolver un problema utilizando la descomposición en valores singulares en un caso de uso utilizando datos reales o realistas.
  • Ser capaz de resolver un problema utilizando modelos matriciales en un caso de uso utilizando datos reales o realistas.
  • Entender la utilidad de utilizar un lenguaje de programación para el tratamiento de grandes volúmenes de datos.
  • Coger destreza en la utilización del lenguaje R para la resolución de problemas con un gran volumen de datos.


Competencias  

Dentro de las memorias de Grado aprobadas por el Consejo de Universidades, las competencias específicas requeridas son las siguientes:

  • Que los / las estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  • Utilizar de forma combinada los fundamentos matemáticos, estadísticos y de programación para desarrollar soluciones a problemas en el ámbito de la ciencia de los datos.
  • Uso y aplicación de las TIC en el ámbito académico y profesional.
  • Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
  • Buscar, gestionar y utilizar la información más adecuada para modelizar problemas concretos y aplicar adecuadamente procedimientos teóricos para su resolución de manera autónoma y creativa

Amunt

Herramientas de álgebra y geometría

  • Espacios vectoriales.
  • Matrices.
  • Determinantes.
  • Ecuaciones de rectas y planos.
  • Producto escalar y ortogonalidad.


Sistemas de ecuaciones

  • Sistemas de ecuaciones lineales (SEL).
  • Expresión matricial de un SEL. Discusión de SEL.
  • Sistemas lineales homogéneos.
  • Resolución de SEL por Gauss.
  • Sistemas de Cramer. Resolución de SEL por Cramer.
  • Interpretación geométrica de los SEL.


Aplicaciones lineales

  • Concepto de aplicación lineal.
  • Matriz asociada a una aplicación lineal.
  • Núcleo e imagen de una aplicación lineal.
  • Morfismos y endomorfismos.
  • Cambios de base en una aplicación lineal.
  • Vectores y valores propios. Diagonalización.


Descomposición en valores singulares

  • La maldición de la dimensión en ciencia de datos.
  • Análisis de componentes principales (PCA): reducción de la dimensión y extracción de características.
  • Aplicación de PCA a la ciencia de datos.
  • Descomposición en valores singulares (SVD).
  • Aplicación de SVD a la ciencia de datos.


Modelos Matriciales: Cadenas de Markov

  • Introducción a los modelos matriciales en tiempo discreto.
  • Concepto de cadenas de Markov en tiempo discreto. Diagrama de estados y probabilidades de transición.
  • Evolución en el tiempo de una cadena de Markov.
  • Matrices positivas y valor propio dominante. Distribuciones de estado estacionarias.
  • Aplicación a la ciencia de datos.

Amunt

Aplicaciones lineales, diagonalización y vectores propios. Contextualización y objetivos para la ciencia de datos PDF
Elementos básicos del álgebra lineal. Problemas para la ciencia de datos PDF
Resolución de sistemas de ecuaciones lineales. Problemas para la ciencia de datos PDF
Descomposición en valores singulares: introducción y aplicaciones. Problemas para la ciencia de datos PDF
Espacio de recursos de ciencia de datos Web
Sistemas de ecuaciones lineales PDF
Elementos básicos del álgebra lineal. Contextualización y objetivos para la ciencia de datos PDF
Los números PDF
Caso de uso y guía de resolución en R. Cadenas de Markov: estudio del viento PDF
Introduccción los modelos matriciales para la ciencia de datos PDF
Álgebra lineal para la ciencia de datos PDF
Aplicaciones lineales, diagonalización y vectores propios. Problemas para la ciencia de datos PDF
Transformaciones geométricas PDF
Modelos matriciales: cadenas de Markov. Problemas para la ciencia de datos PDF
Resolución de sistemas de ecuaciones lineales. Contextualización y objetivos para la ciencia de datos PDF
Aplicaciones lineales PDF
Elementos de álgebra lineal y geometría PDF
Descomposición en valores singulares: Introducción y aplicaciones. Contextualización y objetivos para la ciencia de datos PDF
Descomposición en valores singulares: introducción y aplicaciones. Análisis de componentes principales (PCA) y descomposición en valores singulares (SVD) PDF
Descomposición en valores singulares: introducción y aplicaciones. Estudio de caso y guía de resolución en R PDF

Amunt

En el apartado recursos del aula encontraréis los manuales de CalcME y de R.

Amunt

La Normativa académica de la UOC dispone que el proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de los ejercicios realizados.

La falta de originalidad en la autoría o el mal uso de las condiciones en las que se hace la evaluación de la asignatura es una infracción que puede tener consecuencias académicas graves.

El estudiante será calificado con un suspenso (D/0) si se detecta falta de originalidad en la autoría de alguna actividad evaluable (práctica, prueba de evaluación continua (PEC) o final (PEF), o la que se defina en el plan docente), ya sea porque ha utilizado material o dispositivos no autorizados, ya sea porque ha copiado de forma textual de internet, o ha copiado de apuntes, de materiales, manuales o artículos (sin la citación correspondiente) o de otro estudiante, o por cualquier otra conducta irregular.

La calificación de suspenso (D/0) en la evaluación continua (EC) puede conllevar la obligación de hacer el examen presencial para superar la asignatura (si hay examen y si superarlo es suficiente para superar la asignatura según indique este plan docente).

Cuando esta mala conducta se produzca durante la realización de las pruebas de evaluación finales presenciales, el estudiante puede ser expulsado del aula, y el examinador hará constar todos los elementos y la información relativos al caso.

Además, esta conducta puede dar lugar a la incoación de un procedimiento disciplinario y la aplicación, si procede, de la sanción que corresponda.

La UOC habilitará los mecanismos que considere oportunos para velar por la calidad de sus titulaciones y garantizar la excelencia y la calidad de su modelo educativo.

Amunt

Esta asignatura sólo puede superarse a partir de la evaluación continua (EC), nota que se combina con una nota de prácticas (Pr) para obtener la nota final de la asignatura.La fórmula de acreditación de la asignatura es la siguiente: EC + Pr.Las calificaciones finales de la asignatura se calcularán de la siguiente manera:
- Si la EC y la Pr superan el mínimo, la calificación final será el resultado de la fórmula de cálculo.
- Si no se supera el mínimo de la EC, la calificación final será la de la EC.
- Si no se presenta la EC, la calificación final será No presentado.
- Si la EC supera el mínimo y la Pr no, la calificación final será la nota de la Pr.
- Si la EC supera el mínimo y la Pr no se presenta, la calificación final será Suspendido (2,5).

 
 

Amunt