|
||||||||
Consulta de los datos generales Descripción La asignatura en el conjunto del plan de estudios Campos profesionales en el que se proyecta Conocimientos previos Objetivos y competencias Contenidos Consulta de los recursos de aprendizaje de la UOC para la asignatura Información adicional sobre los recursos de aprendizaje y herramientas de apoyo Informaciones sobre la evaluación en la UOC Consulta del modelo de evaluación | ||||||||
Este es el plan docente de la asignatura para el primer semestre del curso 2023-2024. Podéis consultar si la asignatura se ofrece este semestre en el espacio del campus Más UOC / La universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. El plan docente puede estar sujeto a cambios. | ||||||||
La inteligencia de negocio y el análisis de datos, bajo diferentes nombres (Business Intelligence, Business Analytics, Data Science, Big Data), es actualmente la mayor área de demanda de profesionales cualificados, la mayor fuente de inversión de las empresas en sistemas de información y la mayor causa de creación de negocios de productos y servicios en todo el mundo. El data science surge en un escenario en el que convergen tres circunstancias que caracterizan enormemente nuestro tiempo:
En definitiva, hay que entender data science como un camino, una forma de hacer y de trabajar, y no como un objetivo en sí mismo. Es un componente más de la cultura organizativa que debe involucrar tanto a niveles estratégicos como a niveles operativos de la misma. Por todo esto, una organización que explote data science requerirá incorporar perfiles con conocimientos en ámbitos como algoritmos, metodologías de trabajo, estándares del sector y por supuesto, también conocimientos de negocio. Es generalmente aceptada la idea de asociar habilidades sintéticas y analíticas a las actividades más o menos científicas como data science; sin embargo, es igualmente importante cultivar habilidades creativas para, sistemáticamente buscar y a veces encontrar, patrones nuevos que nos permitan convertir datos en conocimiento. A través del estudio de los distintos algoritmos, el estudiante observará la aportación creativa de distintos científicos que han contribuido muchas veces, con soluciones sencillas, brillantes y efectivas a problemas realmente complejos a priori. La asignatura presenta los conceptos y tipología de análisis de diferentes tipos de datos, los modelos y algoritmos de uso más frecuente de clasificación y agrupación y las metodologías y estándares profesionales y científicos que se usan en analítica de negocio. En esta asignatura el estudiante trabaja principalmente con R. Para ello cuenta con un laboratorio asociado que da soporte a los aspectos más prácticos relacionados con el uso de R. |
||||||||
El Máster en Inteligencia de Negocio y Big Data Analytics (MIBA) y los programas especializados de la UOC en este ámbito, ofrecen desde hace más de diez años una formación práctica y profesionalizadora basada en casos de negocio y en el uso de herramientas de mercado, impartida por profesionales de BI del mundo de la empresa y profesores especialistas en ciencias empresariales, matemáticas e ingeniería informática. Esta asignatura pertenece a la especialidad ESP1 "Análitica de datos". Más concretamente, dicha especialidad incluye otras asignaturas relacionadas:
La especialidad de análitica de datos está dirigida a proporcionar al profesional de perfil empresarial y tecnológico capacidades prácticas de análisis de datos y de manejo de herramientas, dentro del marco científico de Data Science aplicado a los negocios y las organizaciones. En paralelo a esta asignatura, dentro de dicha especialidad los estudiantes desarrollarán los conceptos básicos de minería de datos, de forma que dispondrán de una base sólida para comprender todo el proceso que se inicia con la recogida de datos hasta la publicación de los resultados obtenidos. Esta asignatura, pues, presenta una visión transversal, dotando a los estudiantes de las competencias para manejar los modelos y algoritmos para extraer conocimiento de los datos. De esta forma, usando los conocimientos que se irán adquiriendo en las otras asignaturas de la misma especialidad el estudiante será capaz de capturar datos, procesarlos y exponer el conocimiento derivado de los mismos. |
||||||||
El objetivo del máster de Inteligencia de Negocio y Big Data Analytics (MIBA) de la UOC ha sido tradicionalmente la formación de profesionales todo-terreno con una formación en análisis y solución de problemas de negocio, estadística avanzada y minería de datos y diseño y construcción de sistemas de información de Business Intelligence, que podían trabajar en diferentes departamentos de la empresa o en un centro de competencias transversal. Así pues, dicho máster está dirigido a dos perfiles profesionales diferenciados: Por un lado, un perfil funcional y empresarial interesado en adquirir o completar su formación en métodos, técnicas y herramientas de análisis y minería de datos y en la utilización de tecnologías de inteligencia de negocio, a nivel de usuario avanzado. Y por otro, un perfil técnico interesado en adquirir o completar su formación en el diseño, construcción, explotación y uso de los sistemas y tecnologías de la información de la inteligencia de negocio y el análisis de datos. A medida que esta especialidad ha crecido y las empresas reconocen la necesidad de esta clase de perfiles, también lo han hecho las diferentes salidas profesionales:
|
||||||||
En principio, los estudiantes con ciertos conocimientos de estadística básica no deberían tener problemas para encarar esta asignatura. No obstante, si fuera necesario y el estudiante lo necesita, el consultor proporcionará más referencias respecto los conceptos introducidos. Como el resto de asignaturas de esta especialidad, lo que se pretende es asentar las bases para poder entender sin dificultades las asignaturas que componen la especialidad de Data Science. En cuanto a la capacidad de análisis del estudiante tampoco debería ser un inconveniente. Si bien es cierto que tener nociones en el lenguaje de programación R puede ser de gran ayuda, existen ejemplos de scripts de todos los análisis realizados durante el curso que ayudarán al estudiante a poder hacer una aproximación sin problemas a dicho lenguaje y ser capaz de resolver los ejercicios propuestos durante el semestre. Además, como la metodología se basa en estudios de casos y la investigación autónoma de información, es aconsejable que el estudiante esté familiarizado con la búsqueda de fuentes de información, el análisis de la información cuantitativa y cualitativa, la capacidad de sintetizar y obtener conclusiones así como de poseer ciertas habilidades de comunicación escrita. Por último, es importante poner de manifiesto que para aprovechar al máximo este curso se requiere que el estudiante tenga la capacidad de leer y comprender el inglés puesto que algunos materiales de referencia, así como de otros recursos, están principalmente en dicho idioma. |
||||||||
Con esta asignatura se pretende que el estudiante adquiera conocimientos y habilidades en los siguientes campos:
|
||||||||
Esta asignatura está estructurada de acuerdo a dos grandes bloques. En el primero es donde se presentan todo un conjunto de metodologías y estándares y, por este motivo, se ha creído conveniente hacerlo común a las asignaturas de minería de datos y de business analytics. De esta forma el estudiante no se ve sobrecargado de trabajo y obtiene un material mucho más amplio que le servirá para poder entender mejor ambas asignaturas. El segundo bloque corresponde a los materiales específicos de la asignatura de fundamentos del data science. En concreto, en el bloque de metodologías y estándares se trabajan aspectos distintos englobados en seis módulos:
Como se acaba de comentar, el segundo bloque es el material propio de la asignatura y consta, a su vez, de tres módulos:
|
||||||||
|
||||||||
El material docente que se asocia a esta asignatura consta de dos grandes bloques.
|
||||||||
El proceso de evaluación se fundamenta en el trabajo personal de cada estudiante y presupone la autenticidad de la autoría y la originalidad de los ejercicios realizados. La falta de autenticidad en la autoría o de originalidad de las pruebas de evaluación; la copia o el plagio; el intento fraudulento de obtener un resultado académico mejor; la colaboración, el encubrimiento o el favorecimiento de la copia, o la utilización de material o dispositivos no autorizados durante la evaluación, entre otras, son conductas irregulares que pueden tener consecuencias académicas y disciplinarias graves. Por un lado, si se detecta alguna de estas conductas irregulares, puede comportar el suspenso (D/0) en las actividades evaluables que se definan en el plan docente - incluidas las pruebas finales - o en la calificación final de la asignatura, ya sea porque se han utilizado materiales o dispositivos no autorizados durante las pruebas, como redes sociales o buscadores de información en internet, porque se han copiado fragmentos de texto de una fuente externa (internet, apuntes, libros, artículos, trabajos o pruebas del resto de estudiantes, etc.) sin la correspondiente citación, o porque se ha practicado cualquier otra conducta irregular. Por el otro, y de acuerdo con las normativas académicas, las conductas irregulares en la evaluación, además de comportar el suspenso de la asignatura, pueden dar lugar a la incoación de un procedimiento disciplinario y a la aplicación, si procede, de la sanción que corresponda. La UOC se reserva la potestad de solicitar al estudiante que se identifique o que acredite la autoría de su trabajo a lo largo de todo el proceso de evaluación por los medios que establezca la universidad (síncronos o asíncronos). A estos efectos, la UOC puede exigir al estudiante el uso de un micrófono, una cámara u otras herramientas durante la evaluación y que este se asegure de que funcionan correctamente. La verificación de los conocimientos para garantizar la autoría de la prueba no implicará en ningún caso una segunda evaluación. |
||||||||
|