Álgebra lineal Código:  22.504    :  6
Consulta de los datos generales   Descripción   La asignatura en el conjunto del plan de estudios   Conocimientos previos   Información previa a la matrícula   Objetivos y competencias   Contenidos   Consulta de los recursos de aprendizaje de la UOC para la asignatura   Información adicional sobre los recursos de aprendizaje y herramientas de apoyo   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
Este es el plan docente de la asignatura para el primer semestre del curso 2024-2025. Podéis consultar si la asignatura se ofrece este semestre en el espacio del campus Más UOC / La universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. El plan docente puede estar sujeto a cambios.

Esta asignatura pretende proporcionar al alumnado una formación básica sobre temas de álgebra, como son los elementos de álgebra lineal y geometría, sistemas de ecuaciones lineales, aplicaciones lineales, descomposición en valores singulares y modelos matriciales. Estos contenidos se aplicarán en ejemplos con datos realistas para que el alumnado vea su utilidad en el campo de la ciencia de datos.   Al ser una asignatura de matemáticas, debe ayudar al alumnado en su formación científico-técnica, aportando un lenguaje y metodologías propios de las disciplinas matemáticas y científicas. Proporciona instrumentos para otras materias más directamente relacionadas con el mundo de la ciencia de datos aplicada.

Amunt


Esta asignatura forma parte de la materia "Matemáticas y estadística" del grado de ciencia de datos aplicada que junto con las asignaturas "Iniciación a las matemáticas para la ingeniería", "Métodos numéricos en la ciencia de datos", "Modelado y optimización", "Probabilidad y estadística", "Análisis multivariante" y "Modelización e inferencia bayesiana" proporciona las bases matemáticas para asignaturas más avanzadas propias de la ciencia de datos.

Amunt

Es muy conveniente haber cursado recientemente los cursos de matemáticas correspondientes a Bachillerato o nivel equivalente.

Amunt

Esta asignatura se organiza mediante la realización de 5 actividades:


ACTIVIDAD 1 ¿Cómo resolver problemas típicos de la ciencia de datos con sistemas de ecuaciones lineales? 
ACTIVIDAD 2  Espacios vectoriales y ciencia de datos
ACTIVIDAD 3 ¿Qué son los valores y vectores propios y para qué los utiliza Netflix?
ACTIVIDAD 4 ¿Cómo afrontar la maldición de la dimensionalidad en la ciencia de datos con el análisis de componentes principales y la descomposición en valores singulares?
ACTIVIDAD 5 Como podemos modelar sistemas dinámicos con cadenas Markov tal y como lo hace el algoritmo PageRank de Google? 


Las dos últimas actividades son prácticas: utilizando el lenguaje de programación R, se resolverán problemas con datos reales o realistas aplicando los conceptos teóricos desarrollados en la asignatura.

Amunt

Objetivos Generales

Esta asignatura introduce al alumnado en temas de álgebra y está orientada a futuros científicos y científicas de datos. Los objetivos generales son los siguientes:

  • Proporcionar al alumnado conocimientos y habilidades básicas del álgebra, necesarios en el aprendizaje y aplicación a disciplinas vinculadas a diferentes asignaturas de la titulación.
  • Desarrollar las capacidades del alumnado con respecto a la modelización formal y posterior resolución de problemas que pueden surgir en ámbitos diversos de la ciencia de datos.
  • Aprender a utilizar software matemático (en este curso se utilizará el programa CalcME) y lenguajes de programación (utilizaremos R) que permita al alumnado experimentar con los conceptos de forma interactiva y, también, automatizar los algoritmos de resolución manuales.


Objetivos específicos 

  • Comprender la importancia del álgebra lineal en el ámbito de la ciencia de datos.
  • Conocer y ser capaz de manipular elementos básicos de álgebra lineal (espacios vectoriales, independencia lineal, dimensión, matrices, determinantes) y de la geometría métrica (productos escalares, ortonormalidad, ángulos y distancias).
  • Ser capaz de utilizar la calculadora CalcME para resolver problemas básicos del álgebra lineal.
  • Comprender la importancia de los sistemas de ecuaciones lineales para resolver problemas típicos de la ciencia de datos.
  • Reconocer un sistema de ecuaciones lineales, aprender a expresarlo de forma matricial y saber evaluar si tiene o no solución.
  • Saber interpretar de forma geométrica un sistema de ecuaciones lineales.
  • Ser capaz de resolver sistemas de ecuaciones lineales mediante los métodos de Gauss y Cramer.
  • Comprender la dificultad de resolver un sistema de forma analítica cuando el número de incógnitas y ecuaciones es elevado, así como entender la necesidad de métodos numéricos para este tipo de sistemas.
  • Comprender la utilidad de los conceptos de aplicación lineal, vectores y valores propios en el ámbito de la ciencia de datos.
  • Conocer las aplicaciones lineales y aprender a representarlas en forma de matriz.
  • Entender el concepto de vectores y valores propios, así como la manera de calcularlos y su interpretación geométrica.
  • Ser capaz de resolver problemas de diagonalización de matrices cuadradas.
  • Ser capaz de resolver un problema utilizando la descomposición en valores singulares en un caso de uso utilizando datos reales o realistas.
  • Ser capaz de resolver un problema utilizando modelos matriciales en un caso de uso utilizando datos reales o realistas.
  • Entender la utilidad de utilizar un lenguaje de programación para el tratamiento de grandes volúmenes de datos.
  • Coger destreza en la utilización del lenguaje R para la resolución de problemas con un gran volumen de datos.


Competencias  

Dentro de las memorias de Grado aprobadas por el Consejo de Universidades, las competencias específicas requeridas son las siguientes:

  • Que el alumnado haya demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  • Utilizar de forma combinada los fundamentos matemáticos, estadísticos y de programación para desarrollar soluciones a problemas en el ámbito de la ciencia de los datos.
  • Uso y aplicación de las TIC en el ámbito académico y profesional.
  • Que el alumnado haya desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
  • Buscar, gestionar y utilizar la información más adecuada para modelizar problemas concretos y aplicar adecuadamente procedimientos teóricos para su resolución de manera autónoma y creativa

Amunt

Herramientas de álgebra y geometría

  • Matrices.
  • Determinantes.
  • Ecuaciones de rectas y planos.
  • Espacios vectoriales.
  • Producto escalar y ortogonalidad.


Sistemas de ecuaciones

  • Sistemas de ecuaciones lineales (SEL).
  • Expresión matricial de un SEL. Discusión de SEL.
  • Sistemas lineales homogéneos.
  • Resolución de SEL por Gauss.
  • Sistemas de Cramer. Resolución de SEL por Cramer.
  • Interpretación geométrica de los SEL.


Aplicaciones lineales

  • Concepto de aplicación lineal.
  • Matriz asociada a una aplicación lineal.
  • Núcleo e imagen de una aplicación lineal.
  • Morfismos y endomorfismos.
  • Cambios de base en una aplicación lineal.
  • Vectores y valores propios. Diagonalización.


Descomposición en valores singulares

  • La maldición de la dimensión en ciencia de datos.
  • Análisis de componentes principales (PCA): reducción de la dimensión y extracción de características.
  • Aplicación de PCA a la ciencia de datos.
  • Descomposición en valores singulares (SVD).
  • Aplicación de SVD a la ciencia de datos.


Modelos Matriciales: Cadenas de Markov

  • Introducción a los modelos matriciales en tiempo discreto.
  • Concepto de cadenas de Markov en tiempo discreto. Diagrama de estados y probabilidades de transición.
  • Evolución en el tiempo de una cadena de Markov.
  • Matrices positivas y valor propio dominante. Distribuciones de estado estacionarias.
  • Aplicación a la ciencia de datos.

Amunt

Espacio de recursos de ciencia de datos Web
Aplicaciones lineales, diagonalización y vectores propios: contextualización y objetivos para la ciencia de datos PDF
Aplicaciones lineales, diagonalización y vectores propios: problemas para la ciencia de datos PDF
Descomposición en valores singulares: Introducción y aplicaciones. Contextualización y objetivos para la ciencia de datos PDF
Descomposición en valores singulares: introducción y aplicaciones. Análisis de componentes principales (PCA) y descomposición en valores singulares (SVD) PDF
Descomposición en valores singulares: introducción y aplicaciones. Problemas para la ciencia de datos PDF
Descomposición en valores singulares: introducción y aplicaciones. Estudio de caso y guía de resolución en R PDF
Elementos básicos del álgebra lineal. Contextualización y objetivos para la ciencia de datos PDF
Elementos básicos del álgebra lineal. Problemas para la ciencia de datos PDF
Resolución de sistemas de ecuaciones lineales. Contextualización y objetivos para la ciencia de datos PDF
Resolución de sistemas de ecuaciones lineales. Problemas para la ciencia de datos PDF
Introduccción los modelos matriciales para la ciencia de datos PDF
Modelos matriciales: cadenas de Markov. Problemas para la ciencia de datos PDF
Caso de uso y guía de resolución en R. Cadenas de Markov: estudio del viento PDF
Álgebra lineal para la ciencia de datos PDF
Aplicaciones lineales: matriz asociada, vectores y valores propios y diagonalización PDF
Iniciación a las matemáticas para la ingeniería Web
3. Espacios vectoriales Audiovisual
2. Matrices y sistemas de ecuaciones lineales Audiovisual
4. Aplicaciones lineales Audiovisual
1. Números complejos Audiovisual
Sistemas de ecuaciones lineales: discusión, resolución e interpretación geométrica PDF
Elementos de álgebra lineal y geometría: espacios vectoriales, matrices, determinantes, espacio afín y euclídeo PDF
Aplicaciones lineales: matriz asociada, vectores y valores propios y diagonalización PDF

Amunt

En el apartado recursos del aula encontraréis los manuales de CalcME y de R.

Amunt

En la UOC, la evaluación generalmente es virtual. Se estructura en torno a la evaluación continua, que incluye diferentes actividades o retos; la evaluación final, que se lleva a cabo mediante pruebas o exámenes, y el trabajo final de la titulación.

Las actividades o pruebas de evaluación pueden ser escritas y/o audiovisuales, con preguntas aleatorias, pruebas orales síncronas o asíncronas, etc., de acuerdo con lo que decida cada equipo docente. Los trabajos finales representan el cierre de un proceso formativo que implica la realización de un trabajo original y tutorizado que tiene como objetivo demostrar la adquisición competencial hecha a lo largo del programa.

Para verificar la identidad del estudiante y la autoría de las pruebas de evaluación, la UOC se reserva la potestad de aplicar diferentes sistemas de reconocimiento de la identidad y de detección del plagio. Con este objetivo, la UOC puede llevar a cabo grabación audiovisual o usar métodos o técnicas de supervisión durante la ejecución de cualquier actividad académica.

Asimismo, la UOC puede exigir al estudiante el uso de dispositivos electrónicos (micrófonos, cámaras u otras herramientas) o software específico durante la evaluación. Es responsabilidad del estudiante asegurar que estos dispositivos funcionan correctamente.

El proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de las actividades académicas. La web sobre integridad académica y plagio de la UOC contiene información al respecto.

La falta de autenticidad en la autoría o de originalidad de las pruebas de evaluación; la copia o el plagio; la suplantación de identidad; la aceptación o la obtención de cualquier actividad académica a cambio o no de una contraprestación; la colaboración, el encubrimiento o el favorecimiento de la copia, o el uso de material, software o dispositivos no autorizados en el plan docente o el enunciado de la actividad académica, incluida la inteligencia artificial y la traducción automática, entre otras, son conductas irregulares en la evaluación que pueden tener consecuencias académicas y disciplinarias graves.

Estas conductas irregulares pueden conllevar el suspenso (D/0) en las actividades evaluables definidas en el plan docente -incluidas las pruebas finales- o en la calificación final de la asignatura, ya sea porque se han utilizado materiales, software o dispositivos no autorizados durante las pruebas (como el uso de inteligencia artificial no permitida, redes sociales o buscadores de información en internet), porque se han copiado fragmentos de texto de una fuente externa (internet, apuntes, libros, artículos, trabajos o pruebas de otros estudiantes, etc.) sin la citación correspondiente, por la compraventa de actividades académicas, o porque se ha llevado a cabo cualquier otra conducta irregular.

Asimismo, y de acuerdo con la normativa académica, las conductas irregulares en la evaluación también pueden dar lugar a la incoación de un procedimiento disciplinario y a la aplicación, si procede, de la sanción que corresponda, de conformidad con lo establecido en la normativa de convivencia de la UOC.

En el marco del proceso de evaluación, la UOC se reserva la potestad de:

  • Solicitar al estudiante que acredite su identidad según lo establecido en la normativa académica.
  • Solicitar al estudiante que acredite la autoría de su trabajo a lo largo de todo el proceso de evaluación, tanto en la evaluación continua como en la evaluación final, a través de una entrevista oral síncrona, que puede ser objeto de grabación audiovisual, o por los medios establecidos por la UOC. Estos medios tienen el objetivo de verificar los conocimientos y las competencias que garanticen la identidad del estudiante. Si no es posible garantizar que el estudiante es el autor de la prueba, esta puede ser calificada con una D, en el caso de la evaluación continua, o con un suspenso, en el caso de la evaluación final.

Inteligencia artificial en el marco de la evaluación

La UOC reconoce el valor y el potencial de la inteligencia artificial (IA) en el ámbito educativo y, a su vez, pone de manifiesto los riesgos que supone si no se utiliza de forma ética, crítica y responsable. En este sentido, en cada actividad de evaluación se informará al estudiantado sobre las herramientas y los recursos de IA que se pueden utilizar y en qué condiciones. Por su parte, el estudiantado se compromete a seguir las indicaciones de la UOC a la hora de realizar las actividades de evaluación y de citar las herramientas utilizadas y, concretamente, a identificar los textos o imágenes generados por sistemas de IA, los cuales no podrá presentar como si fueran propios.

Respecto a usar o no la IA para resolver una actividad, el enunciado de las actividades de evaluación indica las limitaciones en el uso de estas herramientas. Debe tenerse en cuenta que usarlas de manera inadecuada, como por ejemplo en actividades en las que no están permitidas o no citarlas en las actividades en las que sí lo están, puede considerarse una conducta irregular en la evaluación. En caso de duda, se recomienda que, antes entregar la actividad, se haga llegar una consulta al profesorado colaborador del aula.

Amunt

La asignatura solo puede aprobarse con el seguimiento y la superación de la evaluación continua (EC). La calificación final de la asignatura es la nota obtenida en la EC.

 

Amunt