|
||||||||||||||||||||||||||||||||||||||||
Consulta de los datos generales Descripción La asignatura en el conjunto del plan de estudios Campos profesionales en el que se proyecta Conocimientos previos Objetivos y competencias Contenidos Consulta de los recursos de aprendizaje de la UOC para la asignatura Informaciones sobre la evaluación en la UOC Consulta del modelo de evaluación | ||||||||||||||||||||||||||||||||||||||||
Este es el plan docente de la asignatura para el primer semestre del curso 2024-2025. Podéis consultar si la asignatura se ofrece este semestre en el espacio del campus Más UOC / La universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. El plan docente puede estar sujeto a cambios. | ||||||||||||||||||||||||||||||||||||||||
El objetivo de la minería de datos es extraer conocimiento en forma de patrones, reglas y otros modelos matemáticos y algorítmicos que describen la naturaleza subyacente a un problema concreto. Es sabido que no existe un modelo universal que funcione mejor que el resto para cualquier problema o conjunto de datos (el llamado "no free lunch theorem"), sino que es necesario analizar la naturaleza de dicho problema e intentar aplicar el mejor método posible, o bien una combinación de ellos. En la actualidad, la investigación frontera en el ámbito de la minería de datos se basa, por una parte, en mejorar los algoritmos conocidos mediante el fine-tuning de sus parámetros, lo cual puede permitir obtener resultados ligeramente mejores para un conjunto de datos dado. En el escenario actual Big Data, debido a la aparición de conjuntos de datos masivos, de alta dimensionalidad y mayoritariamente categóricos, es necesario también ajustar los algoritmos tradicionales para incrementar su eficacia, dado que se incumplen muchas de las premisas en las cuales están basados (normalidad, suavidad, distancias bien definidas, etc.). Por otra parte, también es posible mejorar los resultados obtenidos mediante la combinación de diferentes clasificadores, creando sistemas de decisión complejos a partir de cientos o miles de clasificadores más sencillos. Esto incluye el uso de esquemas de votación, la generación aleatoria de clasificadores a partir de un modelo preestablecido y la reutilización de decisiones tomadas anteriormente para mejorar la predicción actual. Por lo tanto, en esta asignatura se describen algunos de los modelos y algoritmos considerados el estado del arte en minería de datos y se introduce el concepto de combinación de clasificadores, de forma que el estudiante comprenda la necesidad de analizar el problema a resolver desde diferentes perspectivas analíticas y proponga una solución que combine uno o más modelos en función de los objetivos a alcanzar. |
||||||||||||||||||||||||||||||||||||||||
Esta asignatura pertenece al conjunto de asignaturas obligatorias dentro del Máster universitario en Ciencia de datos (Data Science). Se recomienda cursar esta asignatura antes que el resto de asignaturas de análisis de datos, que se ofrecen como optativas dentro del máster. |
||||||||||||||||||||||||||||||||||||||||
El objetivo del máster es la formación de profesionales en la ciencia de datos. Esta asignatura, específicamente, se focaliza en los campos relacionados con el análisis, la estadística avanzada y la minería de datos (o machine learning). A medida que esta especialidad ha crecido y las empresas reconocen la necesidad de esta clase de perfiles, también lo han hecho las diferentes salidas profesionales:
|
||||||||||||||||||||||||||||||||||||||||
Para la realización de esta asignatura se presuponen conocimientos de programación, principalmente en lenguaje Python. Por lo que respecta a conocimientos teóricos o matemáticos, se presupone que los estudiantes que cursan esta asignatura han cursado previamente la asignatura de "minería de datos", que introduce los conceptos básicos sobre los algoritmos supervisados y no supervisados. Además, como la metodología incluye estudios de casos y la investigación autónoma de información, es aconsejable que el estudiante esté familiarizado con la búsqueda de fuentes de información, el análisis de la información cuantitativa y cualitativa, la capacidad de sintetizar y obtener conclusiones así como de poseer ciertas habilidades de comunicación escrita. Finalmente, dada la naturaleza de la asignatura, es necesario utilizar herramientas y procedimientos descritos en lengua inglesa, por lo que un nivel básico de lectura y comprensión de textos técnicos es imprescindible. |
||||||||||||||||||||||||||||||||||||||||
Los objetivos que se pretende que el estudiante alcance mediante esta asignatura son los siguientes:
|
||||||||||||||||||||||||||||||||||||||||
Introducción
Validación y evaluación de resultados
Extracción y selección de atributos
Métodos no supervisados
Métodos supervisados
Combinación de clasificadores
|
||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
En la UOC, la evaluación generalmente es virtual. Se estructura en torno a la evaluación continua, que incluye diferentes actividades o retos; la evaluación final, que se lleva a cabo mediante pruebas o exámenes, y el trabajo final de la titulación. Las actividades o pruebas de evaluación pueden ser escritas y/o audiovisuales, con preguntas aleatorias, pruebas orales síncronas o asíncronas, etc., de acuerdo con lo que decida cada equipo docente. Los trabajos finales representan el cierre de un proceso formativo que implica la realización de un trabajo original y tutorizado que tiene como objetivo demostrar la adquisición competencial hecha a lo largo del programa. Para verificar la identidad del estudiante y la autoría de las pruebas de evaluación, la UOC se reserva la potestad de aplicar diferentes sistemas de reconocimiento de la identidad y de detección del plagio. Con este objetivo, la UOC puede llevar a cabo grabación audiovisual o usar métodos o técnicas de supervisión durante la ejecución de cualquier actividad académica. Asimismo, la UOC puede exigir al estudiante el uso de dispositivos electrónicos (micrófonos, cámaras u otras herramientas) o software específico durante la evaluación. Es responsabilidad del estudiante asegurar que estos dispositivos funcionan correctamente. El proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de las actividades académicas. La web sobre integridad académica y plagio de la UOC contiene información al respecto. La falta de autenticidad en la autoría o de originalidad de las pruebas de evaluación; la copia o el plagio; la suplantación de identidad; la aceptación o la obtención de cualquier actividad académica a cambio o no de una contraprestación; la colaboración, el encubrimiento o el favorecimiento de la copia, o el uso de material, software o dispositivos no autorizados en el plan docente o el enunciado de la actividad académica, incluida la inteligencia artificial y la traducción automática, entre otras, son conductas irregulares en la evaluación que pueden tener consecuencias académicas y disciplinarias graves. Estas conductas irregulares pueden conllevar el suspenso (D/0) en las actividades evaluables definidas en el plan docente -incluidas las pruebas finales- o en la calificación final de la asignatura, ya sea porque se han utilizado materiales, software o dispositivos no autorizados durante las pruebas (como el uso de inteligencia artificial no permitida, redes sociales o buscadores de información en internet), porque se han copiado fragmentos de texto de una fuente externa (internet, apuntes, libros, artículos, trabajos o pruebas de otros estudiantes, etc.) sin la citación correspondiente, por la compraventa de actividades académicas, o porque se ha llevado a cabo cualquier otra conducta irregular. Asimismo, y de acuerdo con la normativa académica, las conductas irregulares en la evaluación también pueden dar lugar a la incoación de un procedimiento disciplinario y a la aplicación, si procede, de la sanción que corresponda, de conformidad con lo establecido en la normativa de convivencia de la UOC. En el marco del proceso de evaluación, la UOC se reserva la potestad de:
Inteligencia artificial en el marco de la evaluación La UOC reconoce el valor y el potencial de la inteligencia artificial (IA) en el ámbito educativo y, a su vez, pone de manifiesto los riesgos que supone si no se utiliza de forma ética, crítica y responsable. En este sentido, en cada actividad de evaluación se informará al estudiantado sobre las herramientas y los recursos de IA que se pueden utilizar y en qué condiciones. Por su parte, el estudiantado se compromete a seguir las indicaciones de la UOC a la hora de realizar las actividades de evaluación y de citar las herramientas utilizadas y, concretamente, a identificar los textos o imágenes generados por sistemas de IA, los cuales no podrá presentar como si fueran propios. Respecto a usar o no la IA para resolver una actividad, el enunciado de las actividades de evaluación indica las limitaciones en el uso de estas herramientas. Debe tenerse en cuenta que usarlas de manera inadecuada, como por ejemplo en actividades en las que no están permitidas o no citarlas en las actividades en las que sí lo están, puede considerarse una conducta irregular en la evaluación. En caso de duda, se recomienda que, antes entregar la actividad, se haga llegar una consulta al profesorado colaborador del aula. |
||||||||||||||||||||||||||||||||||||||||
|