Modelaje y optimización Código:  22.506    :  6
Consulta de los datos generales   Descripción   La asignatura en el conjunto del plan de estudios   Conocimientos previos   Información previa a la matrícula   Objetivos y competencias   Contenidos   Consulta de los recursos de aprendizaje de los que dispone la asignatura   Recursos de aprendizaje y herramientas de apoyo   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
ATENCIÓN: Este es el plan docente de la asignatura para el primer semestre del curso 2020-2021. Os servirá para planificar la matrícula. Una vez empiece la docencia, tenéis que consultarlo en el aula. (El plan docente puede estar sujeto a cambios).
En esta asignatura veremos dos vertientes de la optimización en la ciencia de datos. La primera hace referencia al papel central de la optimización en el machine learning, donde el planteamiento del problema es en general el mismo y lo que varía son las técnicas para resolverlo. En cambio, en la segunda aprenderemos a plantear formalmente problemas reales en términos de problemas de optimización, definiendo los elementos característicos como variables, función objetivo y restricciones.

El machine learning se basa en ajustar un modelo a los datos que tenemos de manera que en el futuro haga las mejores predicciones posibles. Este proceso de ajuste es el resultado de un problema de optimización. En la primera parte de esta asignatura plantearemos el problema básico de optimización en machine learning y trataremos los principales métodos como regresión lineal, regresión logística, redes neuronales, ... Por ello, necesitaremos aprender métodos de optimización sin restricciones, como el descenso del gradiente estocástico, o métodos de optimización con restricciones mediante las condiciones de Karush-Kuhn-Tucker. La optimización entendida de manera general tiene aplicaciones que van desde la ciencia de datos hasta problemas de transporte, logística, computación, etc. En la segunda parte de esta asignatura veremos algoritmos de resolución de problemas de optimización lineal y entera, como los algoritmos Simplex y Ramificación-Acotación, interpretando los resultados que obtengamos. Finalmente, aprenderemos a modelar los problemas de optimización. La idea es encontrar la mejor combinación posible de decisiones (variables) para optimizar el objetivo del problema (función objetivo), sujeto a las limitaciones en las posibles soluciones (restricciones).

Amunt

Esta asignatura se enmarca en el tercer semestre del grado de ciencia de datos aplicada. Junto con "Álgebra Lineal", "Probabilidad y Estadística", "Métodos Numéricos en Ciencias de datos", "Análisis Multivariante" y "Modelización e inferencia bayesiana" forma parte de la materia de matemáticas del grado. Esta asignatura complementa la formación matemática del estudiante en relación a modelado matemático y optimización, incluyendo optimización con/sin restricciones y optimización lineal y entera. Sirve de base para asignaturas más avanzadas en el análisis de datos, como la asignatura "Aprendizaje automático" del mismo grado de ciencia de datos aplicada así como de asignaturas a nivel de máster.

Amunt

Se recomienda haber superado las asignaturas previas del grado: "Álgebra Lineal”, “Probabilidad y estadística” y “Métodos numéricos”.

Amunt

Esta asignatura se organiza a través de la realización de 5 actividades:


ACTIVIDAD 1:  Cálculo con datos en espacios de grandes dimensiones.

ACTIVIDAD 2: Ajuste de curvas en el aprendizaje automático.

ACTIVIDAD 3:  Entendiendo problemas de optimización complejos.

ACTIVIDAD 4:  El caso particular de la optimización lineal.

ACTIVIDAD 5:  Cerrando el ciclo: modelado de los problemas.

Todas las actividades se basan en la resolución de problemas con un componente práctico mediante el uso del lenguaje de programación R.

Amunt

Esta asignatura introduce al estudiante a la optimización matemática y al modelaje de problemas de optimización en el contexto de la ciencia de datos. 

Los objetivos específicos son los siguientes:

  • Poder trabajar simbólicamente con varias variables y funciones convexas.
  • Extender las nociones de primera y segunda derivada al gradiente y la matriz Hessiana.
  • Adquirir agilidad en el cálculo con diversas variables, en particular la regla de la cadena.
  • Tratar y graficar aproximación de funciones.
  • Entender qué rol toma la optimización en el aprendizaje automático. Ver cuál es el planteamiento típico de ajuste de modelos.
  • Entender cuáles son las condiciones y las intuiciones para encontrar mínimos de funciones sin restricciones
  • Entender cuáles son las técnicas que se utilizan para encontrar mínimos en problemas de optimización. 
  • Ser capaz de programar el método del gradiente para resolver problemas de optimización sin restricciones
  • Entender y aplicar las condiciones de Karush-Kuhn-Tucker en problemas de optimización en la ciencia de datos.
  • Entender las diferencias en las condiciones de optimalidad entre problemas con restricciones de igualdad y desigualdad.
  • Saber formular de maneras equivalentes problemas de optimización.
  • Ser capaz de aplicar métodos numéricos de optimización.
  • Conocer las fases y la terminología básica relacionada con los algoritmos Simplex y Ramificación-Acotación.
  • Saber utilizar manualmente el algoritmo Simplex para resolver problemas sencillos de programación lineal.
  • Saber utilizar manualmente el algoritmo Ramificación-Acotación para resolver problemas sencillos de programación lineal entera y mixta.
  • Ser capaz de utilizar un lenguaje de programación para resolver problemas de programación lineal y de programación lineal entera y mixta con un nivel de complejidad media.
  • Ser capaz de interpretar las soluciones obtenidas con la aplicación de los algoritmos Simplex y Ramificación-Acotación, tanto manualmente como con software.
  • Ser capaz de entender y clasificar un problema de optimización dado, entre las diferentes tipologías vistas a la asignatura, y definir la técnica más adecuada para resolverlo.
  • Ser capaz de desarrollar un modelo que represente, mediante funciones matemáticas, una realidad más compleja, con el fin de estudiar la gestión óptima y la optimización.
  • Saber identificar los datos necesarios para resolver un problema, las variables asociadas a las decisiones que deben tomarse, la función objetivo a optimizar, y las restricciones que delimitan las posibles soluciones. 
  • Ser capaz de presentar un problema dado y el modelo de optimización desarrollado, explicando verbalmente la conexión entre el problema y la formulación matemática, así como los diferentes elementos del modelo.

Competencias

Dentro de las memorias de Grado aprobadas por el Consejo de Universidades, las competencias específicas requeridas son las siguientes:

  • Que los/las estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  • Que los/las estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
  • Buscar, gestionar y usar la información más adecuada para modelizar problemas concretos y aplicar adecuadamente procedimientos teóricos para su resolución de manera autónoma y creativa.
  • Uso y aplicación de las TIC en el ámbito académico y profesional.
  • Expresarse de forma escrita de forma adecuada al contexto académico y profesional.
  • Utilizar de forma combinada los fundamentos matemáticos, estadísticos y de programación para desarrollar soluciones a problemas en el ámbito de la ciencia de los datos.
  • Resumir, interpretar, presentar y contrastar de forma crítica los resultados obtenidos utilizando las herramientas de análisis y visualización más adecuadas.

Amunt

Introducción a la optimización

  • Introducción al cálculo en varias variables
  • Gradiente
  • Hessiana
  • Convexidad y ejemplos de convexidad
  • Optimización en ciencia de datos
  • Mínimos cuadrados y minimización del riesgo empírico
  • Descripción del problema de optimización


Optimización sin restricciones

  • Ejemplos en la ciencia de datos
  • Condiciones de optimalidad
  • Método del gradiente
  • Método de Newton


Optimización con restricciones

  • Ejemplos en la ciencia de datos
  • Dualidad
  • Condiciones Karush-Kuhn-Tucker
  • Métodos numéricos de optimización


Optimización lineal

  • Introducción
  • Algoritmo Simplex
  • Optimización entera
  • Algoritmo de Ramificación y Acotación


Programación matemática

  • Introducción y formulación
  • Transformaciones formales
  • Técnicas de modelización

Amunt

Guía de estudio de optimización sin restricciones PDF
Modelado y optimización. Introducción a la asignatura PDF
Guía de estudio de optimitzación con restricciones PDF
Guía de estudio del cálculo en diversas variables PDF
Guía de estudio de programación matemática PDF
Guía de estudio de optimización lineal PDF

Amunt

Garrett Grolemund. Hands-On Programming with R.

Amunt

La Normativa académica de la UOC dispone que el proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de los ejercicios realizados.

La falta de originalidad en la autoría o el mal uso de las condiciones en las que se hace la evaluación de la asignatura es una infracción que puede tener consecuencias académicas graves.

El estudiante será calificado con un suspenso (D/0) si se detecta falta de originalidad en la autoría de alguna actividad evaluable (práctica, prueba de evaluación continua (PEC) o final (PEF), o la que se defina en el plan docente), ya sea porque ha utilizado material o dispositivos no autorizados, ya sea porque ha copiado de forma textual de internet, o ha copiado de apuntes, de materiales, manuales o artículos (sin la citación correspondiente) o de otro estudiante, o por cualquier otra conducta irregular.

La calificación de suspenso (D/0) en la evaluación continua (EC) puede conllevar la obligación de hacer el examen presencial para superar la asignatura (si hay examen y si superarlo es suficiente para superar la asignatura según indique este plan docente).

Cuando esta mala conducta se produzca durante la realización de las pruebas de evaluación finales presenciales, el estudiante puede ser expulsado del aula, y el examinador hará constar todos los elementos y la información relativos al caso.

Además, esta conducta puede dar lugar a la incoación de un procedimiento disciplinario y la aplicación, si procede, de la sanción que corresponda.

La UOC habilitará los mecanismos que considere oportunos para velar por la calidad de sus titulaciones y garantizar la excelencia y la calidad de su modelo educativo.

Amunt

Esta asignatura sólo puede superarse a partir de la evaluación continua (EC). La nota final de evaluación continua se convierte en la nota final de la asignatura. La fórmula de acreditación de la asignatura es la siguiente: EC.

 

Amunt