Diseño y uso de bases de datos analíticas Código:  22.510    :  6
Consulta de los datos generales   Descripción   La asignatura en el conjunto del plan de estudios   Campos profesionales en el que se proyecta   Conocimientos previos   Información previa a la matrícula   Objetivos y competencias   Contenidos   Consulta de los recursos de aprendizaje de los que dispone la asignatura   Recursos de aprendizaje y herramientas de apoyo   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
Este es el plan docente de la asignatura. Os servirá para planificar la matrícula (consultad si la asignatura se ofrece este semestre en el espacio del Campus Más UOC / La Universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. (El plan docente puede estar sujeto a cambios).

Desde hace unos años, la toma de decisiones basada en los datos está tomando más fuerza dentro del mundo empresarial, ya que ha quedado demostrado que estas decisiones permiten ser más eficientes.  No obstante, para poder utilizar los datos y convertirlos en información de interés, uno de los puntos más importantes es que estas estén correctamente tratados y almacenados por lo que el abanico de soportes de almacenamiento ha crecido exponencialmente. Hoy en día podemos encontrar los datos en sistemas de ficheros, directamente en formatos de audio, vídeo y texto, así como en bases de datos no-SQL. Sin embargo, el modelo de almacenamiento de datos estructurado sigue siendo sin duda líder en el mercado de soluciones analíticas.

Dentro de los sistemas de almacenamiento estructurado o SQL, podemos encontrar las siguientes bases de datos:

  • Las bases de datos operacionales, que han sido concebidas para dar respuesta al día a día de las empresas y organizaciones. El problema es que estas bases de datos no son útiles para otros fines que implican análisis de datos, como por ejemplo la extracción de conocimiento o la toma de decisiones.
  • Las bases de datos analíticas, que ofrecen respuesta a necesidades que van más allá de la operativa de las organizaciones y empresas. Se nutren principalmente de las bases de datos operacionales y de diversidad de fuentes de datos, disponibles en múltiples formatos. Dada la gran variedad de fuentes y formatos de presentación de datos: recopilar los datos provenientes de todas estas fuentes en uno o más almacenes de datos para garantizar respuesta inmediata a diversidad de consultas, implica disponer de un contexto que permita extraer, transformar y recopilar dicha información llevando a cabo una serie de procesos. Este es uno de los grandes retos a los que se enfrentan las empresas y organizaciones del siglo XXI.

Las bases de datos analíticas son las que estudiaremos en esta asignatura. El almacén de datos o Data Warehouse (DW) es el soporte sobre el que se disponen los datos y a partir del cual se da respuesta a las consultas. Éste, a su vez, se convierte en la pieza central de un contexto más amplio, llamado Factoría de la Información Corporativa (FIC). La FIC y el DW son a día de hoy el centro de atención de las grandes instituciones para que proporcionan un mejor conocimiento de la propia organización y de sus clientes/usuarios.

El objetivo de esta asignatura es aprender a diseñar un DW y crear la FIC, con todos sus componentes, con el fin de obtener una implementación que pueda dar rápida respuesta a las consultas formuladas con finalidad analítica. Además de aprender sobre almacenes de datos, estructuras multidimensionales y procesos de transformación, se aprenderá a gestionar datos y metadatos, a administrar un sistema de data warehouse y los diferentes enfoques que existen para crear la FIC. Dado el carácter eminentemente práctico de la asignatura, el aprendizaje se realizará básicamente a través de la resolución de un proyecto de data warehousing.

Amunt

Diseño y uso de bases de datos analíticas es una asignatura obligatoria en el Grado en Ciencia de Datos Aplicada que forma parte del conjunto de asignaturas de la materia bases de datos.
 
Dentro del plan de estudios va precedida por la asignatura "Bases de datos para data warehousing", la cual introduce al estudiante en el diseño de las bases de datos y el uso del lenguaje estructurado de consultas SQL. Partiendo de esta base, en "Diseño y uso de bases de datos analíticas" se introduce el modelo multidimensional de datos y su explotación. Posteriormente a esta asignatura se puede cursar la asignatura "Bases de datos no relacionales" para conocer otro tipo de bases de datos no basado en SQL. Opcionalmente, "Optimización de bases de datos para entornos analíticos" permitirá completar la formación en materia de bases de datos.


Esta asignatura también se cursa el Máster Universitario en Ciencia de Datos como complemento de formación.

Amunt

Los conocimientos adquiridos en esta asignatura serán de utilidad para perfiles técnicos, tales como arquitectos, ingenieros y científicos de datos, administradores de bases de datos o consultores de business intelligence. Es decir, profesionales responsables de la construcción de la arquitectura de un sistema de análisis de datos o inteligencia de negocio, que, a su vez, se encarga entre otros del diseño de la estructura de datos y los procesos ETL (Extract, Transform and Load), que permitirán tratar los datos convirtiéndolas en información que más tarde podrá ser explotada con diferentes herramientas de reporting, análisis y cuadros de mando, entre otras visualizaciones posibles.

Amunt

Es conveniente disponer de ciertos conocimientos de SQL y diseño de bases de datos relacionales o en su defecto haber cursado la asignatura "Bases de datos para data warehousing" en el caso del Grado en Ciencia de Datos.
Además, es necesario cierto conocimiento de la lengua inglesa para comprender documentación técnica de los productos instalados y/o información de referencia disponible en la red.

Amunt

Contenidos disponibles a partir de febrero 2020.

Amunt

Las principales competencias que el estudiante debe adquirir en el contexto de la asignatura son las que se indican a continuación:

  • Dado un problema de ciencia de datos, saber diseñar e implementar un almacén de datos orientado a procesos analíticos, eligiendo la mejor infraestructura que soporte el sistema y saberlo administrar.
  • Ser capaz de poblar los almacenes de datos a partir de distintas fuentes de información mediante la creación y ejecución de procesos ETL.
  • Conocer y adquirir destreza en la utilización de diferentes tipos de aplicaciones y herramientas (EIS, OLAP) para una óptima explotación del almacén de datos.
  • Ser capaz de llegar a conclusiones importantes como consecuencia del análisis de resultados obtenido de la explotación de datos.

Estas competencias, en el caso del Grado en Ciencia de Datos Aplicada, se relacionan con las siguientes competencias específicas (CE)  que el estudiante debe adquirir en el contexto de la asignatura y son las que se indican a continuación:

  • CE3- Definir, evaluar y seleccionar soluciones tecnológicas, así como recursos (espaciales, temporales) necesarios para el desarrollo y ejecución de proyectos, teniendo en cuenta las alternativas disponibles, las condiciones de mercado y las normativas vigentes.
  • CE8- Identificar y combinar datos de diferentes fuentes y formatos en diferentes gestores de bases de datos para obtener un almacenamiento de datos eficiente en cada contexto de aplicación.
  • CE9- Aplicar técnicas específicas de captura, tratamiento y análisis de datos estructurados, semi-estructurados y no estructurados.

Amunt

Los contenidos de la parte teórica de la asignatura se recogen en los módulos didácticos que componen el material de la asignatura:

  • Introducción a las bases de datos analíticas. Introduce los almacenes de datos o data warehouse (DW) en comparación con las bases de datos relacionales. Los sitúa en el centro de la factoría de la información corporativa (FIC), junto a los demás componentes que la forman (almacén de datos departamental, corporativo, operacional, el componente de integración y transformación de datos, las estructuras multidimensionales y los metadatos), de forma que se pueda tener una primera vista de la arquitectura lógica de las bases de datos analíticas. También resalta, en este contexto, la importancia de los datos, de su gestión y de su correcta explotación, así como la administración del sistema de data warehouse. Presenta también las tendencias actuales.
  • La construcción de la  factoría de la información corporativa. Se definen las distintas estrategias de construcción de un sistema de data warehouse, los pasos a seguir para la construcción de los almacenes de datos y el componente de transformación e integración de la FIC. Así mismo se presentan los perfiles que intervienen en el desarrollo y gestión de la FIC.
  • Los datos en la factoría de la información corporativa. En este módulo se abordan cuestiones como la calidad de los datos, la gestión de los datos maestros, gestión de los metadatos y el gobierno del dato. También se tratan los aspectos relacionados con la legalidad y la ética en el tratamiento de dato.
  • Diseño multidimensional y explotación de datos. Tras una introducción a las necesidades de los analistas de datos y las herramientas OLAP, se presenta el modelo multidimensional. Se explica cómo construir un modelo multidimensional, cada una de las etapas del proceso de diseño (conceptual, lógico y físico) para conseguir una implementación del cubo en un sistema relacional. También se describen algunas operaciones propias del modelo muttidimensional que pueden ser ejecutadas en SQL estándar. Finalmente, se aborda la explotación de los datos, desde la necesidad de una adecuada presentación de los mismos, pasando por los distintos formatos de presentación y las herramientas de apoyo.
  • Administración de la FIC. Una vez construido el data warehouse y la FIC, hay que explotarlo y mantenerlo, de aquí la importancia de la administración de sistemas de datawarehousing. Se presenta el ciclo de vida del data warehouse, desde las primeras etapas de planificación y diseño; pasando por su puesta en marcha y crecimiento; llegando hasta las fases de monitorización, mantenimiento y optimización. También se presentan las figuras concretas encargadas de llevar a cabo conjuntos de tareas especializadas, que las organizaciones deben contemplar para asegurar el buen funcionamiento del sistema.

Amunt

Espacio de recursos de ciencia de datos Web
Administración de la factoría de la información corporativa PDF

Amunt

A parte de los módulos didácticos previamente mencionados, la asignatura dispone de otros materiales adicionales que se encuentran en en el apartado Recursos del aula, como por ejemplo  casos prácticos y actividades resueltas, así como actividades evaluables de muestra. Si hiciera falta algún otro material adicional, será proporcionado durante el curso.

Así mismo, dado el carácter práctico de la asignatura se proporciona un entorno de prácticas previamente configurado para la realización de las actividades prácticas del curso.

En la parte servidor:

  • Sistema operativo: Windows Server 2016
  • Base de datos: Windows SQL  Server 2016 (SGBD  +  SQL Server Analysis Services   + SQL Server Reporting Services)

Y en la parte cliente:

  • SQL Server Management Studio 2017
  • Visual Studio 2017
  • SQL Server Data Tools
  • Report Designer Pentaho
  • Power BI Desktop
  • Pentaho Data Integration v.8

Y para ofrecer soporte técnico a este entorno y resolver incidencias que puedan ocurrir, disponéis de un aula de laboratorio, Laboratorio de Soporte al entorno VDI.

Amunt

La Normativa académica de la UOC dispone que el proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de los ejercicios realizados.

La falta de originalidad en la autoría o el mal uso de las condiciones en las que se hace la evaluación de la asignatura es una infracción que puede tener consecuencias académicas graves.

El estudiante será calificado con un suspenso (D/0) si se detecta falta de originalidad en la autoría de alguna actividad evaluable (práctica, prueba de evaluación continua (PEC) o final (PEF), o la que se defina en el plan docente), ya sea porque ha utilizado material o dispositivos no autorizados, ya sea porque ha copiado de forma textual de internet, o ha copiado de apuntes, de materiales, manuales o artículos (sin la citación correspondiente) o de otro estudiante, o por cualquier otra conducta irregular.

La calificación de suspenso (D/0) en la evaluación continua (EC) puede conllevar la obligación de hacer el examen presencial para superar la asignatura (si hay examen y si superarlo es suficiente para superar la asignatura según indique este plan docente).

Cuando esta mala conducta se produzca durante la realización de las pruebas de evaluación finales presenciales, el estudiante puede ser expulsado del aula, y el examinador hará constar todos los elementos y la información relativos al caso.

Además, esta conducta puede dar lugar a la incoación de un procedimiento disciplinario y la aplicación, si procede, de la sanción que corresponda.

La UOC habilitará los mecanismos que considere oportunos para velar por la calidad de sus titulaciones y garantizar la excelencia y la calidad de su modelo educativo.

Amunt

Esta asignatura sólo puede superarse a partir de la evaluación continua (EC). La nota final de evaluación continua se convierte en la nota final de la asignatura. La fórmula de acreditación de la asignatura es la siguiente: EC.

 

Amunt