Anàlisi de sentiments i textos Codi:  M2.977    :  6
Consulta de les dades generals   Descripció   L'assignatura en el conjunt del pla d'estudis   Coneixements previs   Objectius i competències   Continguts   Consulta dels recursos d'aprenentatge de què disposa l'assignatura   Informacions sobre l'avaluació a la UOC   Consulta del model d'avaluació  
ATENCIÓ: Aquest és el pla docent de l'assignatura per al primer semestre del curs 2020-2021. Us servirà per planificar la matrícula. Un cop comenci la docència, heu de consultar-lo a l'aula. (El pla docent pot estar subjecte a canvis.)

Les dades en format de text (format no estructurat) són un dels grans recursos que tenim a disposició però que, per la seva naturalesa, són extremadament complexos d'analitzar i d'extreure automàticament la informació i coneixement que contenen.

En aquesta assignatura veurem les bases del processament del llenguatge natural o, concretament, de la comprensió del llenguatge natural (Natural Language Understanding). Aquesta base teòrica ens permet endinsar-nos en l'anàlisi de sentiments (sentiment analysis), que constitueix un important camp de recerca en l'actualitat.

Concretament, veurem com interpretar i analitzar automàticament la informació textual, com extreure sentiments i opinions de textos i com avaluar la qualitat dels sistemes de reconeixement de sentiments. Ho farem mitjançant tècniques clàssiques de linguística computacional, així com també aplicant alguns dels principals mètodes d'aprenentatge automàtic (machine learning) i d'aprenentatge profund (deep learning) per a tasques de reconeixement de textos i anàlisis de sentiments.

Amunt

Aquesta assignatura pertany al conjunt d'assignatures optatives del Màster universitari en Ciència de dades (Data Science).

Amunt

El curs requereix que els estudiants tinguin coneixements de programació (preferiblement en llenguatge Python), així com coneixements avançats d'aprenentatge automàtic (machine learning).

Es recomana haver cursat l'assignatura "Models avançats de mineria de dades" abans de cursar aquesta assignatura, ja que s'utilitzen conceptes explicats en aquesta assignatura.

A més, com la metodologia inclou estudis de casos i la recerca autònoma d'informació, és aconsellable que l'estudiant estigui familiaritzat amb la cerca de fonts d'informació, l'anàlisi de la informació quantitativa i qualitativa, la capacitat de sintetitzar i obtenir conclusions així com de posseir certes habilitats de comunicació escrita.

Així mateix també és necessari que els estudiants tinguin la capacitat de llegir i comprendre l'idioma anglès ja que una part dels materials addicionals i altres recursos, estan en aquest idioma.

Amunt

Els objectius que es desitja que l'estudiant assoleixi mitjançant aquesta assignatura són els següents:

  • Conèixer les principals tècniques i eines per al processament i comprensió del llenguatge natural.
  • Saber aplicar les tècniques i eines per a les principals tasques de comprensió del llenguatge natural, incloent la identificació automàtica de temes i idiomes i l'extracció de paraules clau.
  • Conèixer el procés, juntament amb les principals tècniques i eines, per a l'anàlisi de sentiments basats en textos.
  • Saber quan aplicar les diferents aproximacions a l'anàlisi de sentiments i les principals diferències entre elles.
  • Comprendre les principals característiques de les tècniques supervisades i no supervisades per a l'anàlisi de sentiments basats en textos.

Amunt

Els continguts treballats en el curs abasten les següents temàtiques:

Mòdul 1: Com interpretar i analitzar automàticament la informació textual 

Mòdul 2: Extracció de sentiments i opinions 

Mòdul 3: Avaluació de la qualitat dels sistemes de reconeixement de sentiments 

Mòdul 4: Deep Learning aplicat al processament de llenguatge natural

Mòdul 5: Deep Learning aplicat a l'anàlisi de sentiments i opinions 

Mòdul 6: Noves tendéncias

Amunt

Espai de recursos de ciència de dades Web

Amunt

La Normativa acadèmica de la UOC disposa que el procés d'avaluació es fonamenta en el treball personal de l'estudiant i pressuposa l'autenticitat de l'autoria i l'originalitat dels exercicis fets.

La manca d'originalitat en l'autoria o el mal ús de les condicions en què es fa l'avaluació de l'assignatura és una infracció que pot tenir conseqüències acadèmiques greus.

L'estudiant serà qualificat amb un suspens (D/0) si es detecta manca d'originalitat en l'autoria d'alguna activitat avaluable (pràctica, prova d'avaluació contínua (PAC) o final (PAF), o la que es defineixi al pla docent), sigui perquè ha utilitzat material o dispositius no autoritzats, sigui perquè ha copiat textualment d'internet, o ha copiat d'apunts, de materials, de manuals o d'articles (sense la citació corresponent), d'altres estudiants, o per qualsevol altra conducta irregular.

La qualificació de suspens (D/0) en les qualificacions finals d'avaluació contínua pot comportar l'obligació de fer l'examen presencial per a superar l'assignatura (si hi ha examen i si superar-lo és suficient per a superar l'assignatura segons indiqui el pla docent).

Quan aquesta mala conducta es produeixi durant la realització de les proves d'avaluació finals presencials, l'estudiant pot ser expulsat de l'aula, i l'examinador farà constar tots els elements i la informació relatius al cas.

D'altra banda, aquesta conducta pot donar lloc a la incoació d'un procediment disciplinari i l'aplicació, si escau, de la sanció que correspongui.

La UOC habilitarà els mecanismes que consideri oportuns per a vetllar per la qualitat de les seves titulacions i garantir l'excel·lència i la qualitat del seu model educatiu.

Amunt

Aquesta assignatura només es pot superar a partir de l'avaluació contínua (AC). La nota final d'avaluació contínua esdevé la nota final de l'assignatura. La fórmula d'acreditació de l'assignatura és la següent: AC.

 

Amunt