|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View general information Description The subject within the syllabus as a whole Professional fields to which it applies Prior knowledge Information prior to enrolment Learning objectives and results Content View the learning resources used in the subject Guidelines on assessment at the UOC View the assessment model | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This is the course plan for the first semester of the academic year 2024/2025. To check whether the course is being run this semester, go to the Virtual Campus section More UOC / The University / Programmes of study section on Campus. Once teaching starts, you'll be able to find it in the classroom. The course plan may be subject to change. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This course constitutes an introduction to Big Data systems and technologies. The first block addresses the technological structure behind Big Data projects which includes relevant aspects such as the distributed calculation and storage system or the management of the cluster's hardware resources. The next block addresses the two main models of distributed processing: batch and stream processing for simple and complex events. We will see the main functions and characteristics of the most widely used frameworks today, paying special attention to the two great standards: Apache Hadoop and Apache Spark. Finally, in the last block of the subject, we will review the main data analysis libraries, including machine learning, graph analysis and massive data visualization paying special attention when this methods are applied to Big Data problems. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This subject corresponds to an optional course within the University master's degree in Data Science and in Computational Engineering and Mathematics (joint URV, UOC). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The course provides knowledge useful in different professional fields related to the development of software, data science, and machine learning on systems that require the use of big data technology. The course will also be useful for the management or consulting of projects based on Big Data systems, among others. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This course requires students to have basic to intermediate programming skills in Python since 90% of the course will be based on that language. The remaining 10% will be done in Java. Basic to intermediate knowledge about data analysis, machine learning, and computer networking are also assumed.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
None. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The objectives that student will achieve through this course are the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The course consists of 5 thematic blocks, each one supported by its own didactic material:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The assessment process is based on the student's personal work and presupposes authenticity of authorship and originality of the exercises completed. Lack of authenticity of authorship or originality of assessment tests, copying or plagiarism, the fraudulent attempt to obtain a better academic result, collusion to copy or concealing or abetting copying, use of unauthorized material or devices during assessment, inter alia, are offences that may lead to serious academic or other sanctions. Firstly, you will fail the course (D/0) if you commit any of these offences when completing activities defined as assessable in the course plan, including the final tests. Offences considered to be misconduct include, among others, the use of unauthorized material or devices during the tests, such as social media or internet search engines, or the copying of text from external sources (internet, class notes, books, articles, other students' essays or tests, etc.) without including the corresponding reference. And secondly, the UOC's academic regulations state that any misconduct during assessment, in addition to leading to the student failing the course, may also lead to disciplinary procedures and sanctions. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|