|
||||||||||||||||||||||||||
Consulta de los datos generales Descripción La asignatura en el conjunto del plan de estudios Conocimientos previos Información previa a la matrícula Objetivos y competencias Contenidos Consulta de los recursos de aprendizaje de la UOC para la asignatura Información adicional sobre los recursos de aprendizaje y herramientas de apoyo Informaciones sobre la evaluación en la UOC Consulta del modelo de evaluación | ||||||||||||||||||||||||||
Este es el plan docente de la asignatura para el segundo semestre del curso 2023-2024. Podéis consultar si la asignatura se ofrece este semestre en el espacio del campus Más UOC / La universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. El plan docente puede estar sujeto a cambios. | ||||||||||||||||||||||||||
En esta asignatura veremos dos vertientes de la optimización en la ciencia de datos. La primera hace referencia al papel central de la optimización en el machine learning, donde el planteamiento del problema es en general el mismo y lo que varía son las técnicas para resolverlo. En cambio, en la segunda aprenderemos a plantear formalmente problemas reales en términos de problemas de optimización, definiendo los elementos característicos como variables, función objetivo y restricciones. El machine learning se basa en ajustar un modelo a los datos que tenemos de manera que en el futuro haga las mejores predicciones posibles. Este proceso de ajuste es el resultado de un problema de optimización. En la primera parte de esta asignatura plantearemos el problema básico de optimización en machine learning y trataremos los principales métodos como regresión lineal, regresión logística, redes neuronales, ... Por ello, necesitaremos aprender métodos de optimización sin restricciones, como el descenso del gradiente estocástico, o métodos de optimización con restricciones mediante las condiciones de Karush-Kuhn-Tucker. La optimización entendida de manera general tiene aplicaciones que van desde la ciencia de datos hasta problemas de transporte, logística, computación, etc. En la segunda parte de esta asignatura veremos algoritmos de resolución de problemas de optimización lineal y entera, como los algoritmos Simplex y Ramificación-Acotación, interpretando los resultados que obtengamos. Finalmente, aprenderemos a modelar los problemas de optimización. La idea es encontrar la mejor combinación posible de decisiones (variables) para optimizar el objetivo del problema (función objetivo), sujeto a las limitaciones en las posibles soluciones (restricciones). |
||||||||||||||||||||||||||
Esta asignatura se enmarca en el tercer semestre del grado de ciencia de datos aplicada. Junto con "Álgebra Lineal", "Probabilidad y Estadística", "Métodos Numéricos en Ciencias de datos", "Análisis Multivariante" y "Modelización e inferencia bayesiana" forma parte de la materia de matemáticas del grado. Esta asignatura complementa la formación matemática del estudiante en relación con modelado matemático y optimización, incluyendo optimización con/sin restricciones y optimización lineal y entera. Sirve de base para asignaturas más avanzadas en el análisis de datos, como la asignatura "Aprendizaje automático" del mismo grado de ciencia de datos aplicada así como de asignaturas a nivel de máster. |
||||||||||||||||||||||||||
Se recomienda haber superado las asignaturas previas del grado: "Álgebra Lineal", "Probabilidad y estadística" y "Métodos numéricos". |
||||||||||||||||||||||||||
Esta asignatura se organiza a través de la realización de 5 actividades: ACTIVIDAD 1: Cálculo con datos en espacios de grandes dimensiones. ACTIVIDAD 2: Ajuste de curvas en el aprendizaje automático. ACTIVIDAD 3: Entendiendo problemas de optimización complejos. ACTIVIDAD 4: El caso particular de la optimización lineal. ACTIVIDAD 5: Cerrando el ciclo: modelado de los problemas. Todas las actividades se basan en la resolución de problemas con un componente práctico mediante el uso del lenguaje de programación R. |
||||||||||||||||||||||||||
Esta asignatura introduce al alumnado a la optimización matemática y al modelaje de problemas de optimización en el contexto de la ciencia de datos. Los objetivos específicos son los siguientes:
Competencias Dentro de las memorias de Grado aprobadas por el Consejo de Universidades, las competencias específicas requeridas son las siguientes:
|
||||||||||||||||||||||||||
Introducción a la optimización
|
||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
Garrett Grolemund. Hands-On Programming with R. |
||||||||||||||||||||||||||
El proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de los ejercicios realizados. La falta de autenticidad en la autoría o de originalidad de las pruebas de evaluación; la copia o el plagio; el intento fraudulento de obtener un resultado académico mejor; la colaboración, el encubrimiento o el favorecimiento de la copia, o la utilización de material, software o dispositivos no autorizados durante la evaluación, entre otras, son conductas irregulares en la evaluación que pueden tener consecuencias académicas y disciplinarias graves. Estas conductas irregulares pueden comportar el suspenso (D/0) en las actividades evaluables que se definan en el plan docente -incluidas las pruebas finales- o en la calificación final de la asignatura, sea porque se han utilizado materiales, software o dispositivos no autorizados durante las pruebas, como por ejemplo redes sociales o buscadores de información en internet, porque se han copiado fragmentos de texto de una fuente externa (internet, apuntes, libros, artículos, trabajos o pruebas de otros estudiantes, etc.) sin la citación correspondiente, o porque se ha llevado a cabo cualquier otra conducta irregular. Así mismo, y de acuerdo con la normativa académica, las conductas irregulares en la evaluación también pueden dar lugar a la incoación de un procedimiento disciplinario y a la aplicación, si procede, de la sanción que corresponda, de conformidad con lo establecido en la normativa de convivencia de la UOC. En el marco del proceso de evaluación, la UOC se reserva la potestad de:
|
||||||||||||||||||||||||||
|