Minería de textos Código:  22.520    :  6
Consulta de los datos generales   Descripción   La asignatura en el conjunto del plan de estudios   Conocimientos previos   Objetivos y competencias   Contenidos   Consulta de los recursos de aprendizaje de la UOC para la asignatura   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
Este es el plan docente de la asignatura para el primer semestre del curso 2024-2025. Podéis consultar si la asignatura se ofrece este semestre en el espacio del campus Más UOC / La universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. El plan docente puede estar sujeto a cambios.

Los datos en formato de texto (formato no estructurado) son uno de los grandes recursos que tenemos disponibles pero que, por su naturaleza, son extremadamente complejos de analizar y extraer automáticamente la información y conocimiento que contienen.

Esta asignatura propone un viaje al interesante y relevante mundo del procesamiento del lenguaje natural (o texto). Interesante porque la temática da mucho de sí, utiliza contenidos de diferentes disciplinas y es realmente estimulante. Por otra parte, su relevancia es clara, ya que hoy en día el texto es quizás el mayor recurso disponible y ser capaces de entenderlo y extraer automáticamente la información que contiene puede permitirnos hacer cosas que años atrás no parecían posibles, como por ejemplo generar el resumen de una imagen (un caption) automáticamente.

Durante este viaje estudiaremos las bases del procesamiento del lenguaje natural, bases que nos permitirán adentrarnos en el análisis de sentimientos y opiniones, que constituye un importante campo de investigación en la actualidad. Concretamente, aprenderemos a interpretar y analizar automáticamente la información textual, extraer sentimientos y opiniones de los textos y evaluar la calidad de estos sistemas. Todo esto lo haremos mediante técnicas clásicas de lingüística computacional, así como aplicando algunos de los principales métodos de aprendizaje automático (machine learning) y de aprendizaje profundo (deep learning).

Amunt

Esta asignatura pertenece al conjunto de asignaturas obligatorias del grado en ciencia de datos aplicada.

Amunt

El curso requiere que los estudiantes tengan conocimientos de programación ( en lenguaje Python), así como conocimientos avanzados de aprendizaje automático (machine learning).

Se recomienda haber cursado la asignatura "Aprendizaje automático" antes de cursar esta asignatura, ya que se utilizan conceptos explicados en esta asignatura.

Además, como la metodología incluye estudios de casos y la investigación autónoma de información, es aconsejable que el estudiante esté familiarizado con la búsqueda de fuentes de información, el análisis de la información cuantitativa y cualitativa, la capacidad de sintetizar y obtener conclusiones así como de poseer ciertas habilidades de comunicación escrita.

Asimismo también es necesario que los estudiantes tengan la capacidad de leer y comprender el idioma inglés ya que una parte de los materiales y otros recursos, están en este idioma.

Amunt

Los objetivos que se desea que el estudiante alcance mediante esta asignatura son los siguientes:

  • Conocer las principales técnicas y herramientas para el procesamiento y comprensión del lenguaje natural.
  • Saber aplicar las técnicas y herramientas para las principales tareas de comprensión del lenguaje natural, incluyendo la identificación automática de temas e idiomas y la extracción de palabras clave.
  • Conocer el proceso, junto con las principales técnicas y herramientas, para el análisis de sentimientos basados en textos.
  • Saber cuándo aplicar las diferentes aproximaciones al análisis de sentimientos y las principales diferencias entre ellas.

Amunt

Los contenidos trabajados en el curso abarcan las siguientes temáticas:

  • ¿Qué es el procesamiento de lenguaje? ¿Cómo se aborda? Y ¿Para qué sirve?
  • ¿Cómo interpretar y analizar automáticamente la información textual?
  • ¿Cómo extraer sentimientos automáticamente de un texto?
  • ¿Cómo evaluar los sistemas de procesamiento de lenguaje?
  • Conceptos básicos de Deep Learning para aplicarlos en el procesamiento del lenguaje
  • ¿Cómo aplicar aprendizaje profundo por el procesamiento del lenguaje?
  • Tendencias

Amunt

Espacio de recursos de ciencia de datos Web
Módulo 4-Introducción al deep learning aplicado al procesamiento del lenguaje natural PDF
1.2. Introducción (Screencast) Audiovisual
Notebook: cómo interpretar y analizar automáticamente la información textual Audiovisual
Named Entity Linking (Screencast) Audiovisual
Named Entity Recognition (Screencast) Audiovisual

Amunt

El proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de los ejercicios realizados.

La falta de autenticidad en la autoría o de originalidad de las pruebas de evaluación; la copia o el plagio; el intento fraudulento de obtener un resultado académico mejor; la colaboración, el encubrimiento o el favorecimiento de la copia, o la utilización de material, software o dispositivos no autorizados durante la evaluación, entre otras, son conductas irregulares en la evaluación que pueden tener consecuencias académicas y disciplinarias graves.

Estas conductas irregulares pueden comportar el suspenso (D/0) en las actividades evaluables que se definan en el plan docente -incluidas las pruebas finales- o en la calificación final de la asignatura, sea porque se han utilizado materiales, software o dispositivos no autorizados durante las pruebas, como por ejemplo redes sociales o buscadores de información en internet, porque se han copiado fragmentos de texto de una fuente externa (internet, apuntes, libros, artículos, trabajos o pruebas de otros estudiantes, etc.) sin la citación correspondiente, o porque se ha llevado a cabo cualquier otra conducta irregular.

Así mismo, y de acuerdo con la normativa académica, las conductas irregulares en la evaluación también pueden dar lugar a la incoación de un procedimiento disciplinario y a la aplicación, si procede, de la sanción que corresponda, de conformidad con lo establecido en la normativa de convivencia de la UOC.

En el marco del proceso de evaluación, la UOC se reserva la potestad de:

  • Solicitar al estudiante que acredite su identidad según lo establecido en la normativa académica.
  • Solicitar al estudiante que acredite la autoría de su trabajo a lo largo de todo el proceso de evaluación, tanto evaluación continua como evaluación final, por medio de una prueba oral o los medios síncronos o asíncronos que establezca la universidad. Estos medios tendrán por objeto verificar los conocimientos y las competencias que garanticen la autoría; en ningún caso implicarán una segunda evaluación. Si no es posible garantizar la autoría del estudiante, la prueba será calificada con D, en el caso de la evaluación continua, o con un Suspenso, en el caso de la evaluación final.

    A estos efectos, la UOC puede exigir al estudiante el uso de un micrófono, una cámara u otras herramientas durante la evaluación; será responsabilidad del estudiante asegurar que tales dispositivos funcionan correctamente.

Amunt

La asignatura solo puede aprobarse con el seguimiento y la superación de la evaluación continua (EC). La calificación final de la asignatura es la nota obtenida en la EC.

 

Amunt