Modelaje y optimización Código:  22.506    :  6
Consulta de los datos generales   Descripción   La asignatura en el conjunto del plan de estudios   Conocimientos previos   Información previa a la matrícula   Objetivos y competencias   Contenidos   Consulta de los recursos de aprendizaje de la UOC para la asignatura   Información adicional sobre los recursos de aprendizaje y herramientas de apoyo   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
Este es el plan docente de la asignatura para el primer semestre del curso 2024-2025. Podéis consultar si la asignatura se ofrece este semestre en el espacio del campus Más UOC / La universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. El plan docente puede estar sujeto a cambios.
En esta asignatura veremos dos vertientes de la optimización en la ciencia de datos. La primera hace referencia al papel central de la optimización en el machine learning, donde el planteamiento del problema es en general el mismo y lo que varía son las técnicas para resolverlo. En cambio, en la segunda aprenderemos a plantear formalmente problemas reales en términos de problemas de optimización, definiendo los elementos característicos como variables, función objetivo y restricciones.

El machine learning se basa en ajustar un modelo a los datos que tenemos de manera que en el futuro haga las mejores predicciones posibles. Este proceso de ajuste es el resultado de un problema de optimización. En la primera parte de esta asignatura plantearemos el problema básico de optimización en machine learning y trataremos los principales métodos como regresión lineal, regresión logística, redes neuronales, ... Por ello, necesitaremos aprender métodos de optimización sin restricciones, como el descenso del gradiente estocástico, o métodos de optimización con restricciones mediante las condiciones de Karush-Kuhn-Tucker. La optimización entendida de manera general tiene aplicaciones que van desde la ciencia de datos hasta problemas de transporte, logística, computación, etc. En la segunda parte de esta asignatura veremos algoritmos de resolución de problemas de optimización lineal y entera, como los algoritmos Simplex y Ramificación-Acotación, interpretando los resultados que obtengamos. Finalmente, aprenderemos a modelar los problemas de optimización. La idea es encontrar la mejor combinación posible de decisiones (variables) para optimizar el objetivo del problema (función objetivo), sujeto a las limitaciones en las posibles soluciones (restricciones).

Amunt

Esta asignatura se enmarca en el tercer semestre del grado de ciencia de datos aplicada. Junto con "Álgebra Lineal", "Probabilidad y Estadística", "Métodos Numéricos en Ciencias de datos", "Análisis Multivariante" y "Modelización e inferencia bayesiana" forma parte de la materia de matemáticas del grado. Esta asignatura complementa la formación matemática del estudiante en relación con modelado matemático y optimización, incluyendo optimización con/sin restricciones y optimización lineal y entera. Sirve de base para asignaturas más avanzadas en el análisis de datos, como la asignatura "Aprendizaje automático" del mismo grado de ciencia de datos aplicada así como de asignaturas a nivel de máster.

Amunt

Se recomienda haber superado las asignaturas previas del grado: "Álgebra Lineal", "Probabilidad y estadística" y "Métodos numéricos".

Amunt

Esta asignatura se organiza a través de la realización de 5 actividades:

ACTIVIDAD 1: Cálculo con datos en espacios de grandes dimensiones.

ACTIVIDAD 2: Ajuste de curvas en el aprendizaje automático.

ACTIVIDAD 3: Entendiendo problemas de optimización complejos.

ACTIVIDAD 4: El caso particular de la optimización lineal.

ACTIVIDAD 5: Cerrando el ciclo: modelado de los problemas.

Todas las actividades se basan en la resolución de problemas con un componente práctico mediante el uso del lenguaje de programación R.

Amunt

Esta asignatura introduce al alumnado a la optimización matemática y al modelaje de problemas de optimización en el contexto de la ciencia de datos. 

Los objetivos específicos son los siguientes:

  • Poder trabajar simbólicamente con varias variables y funciones convexas.
  • Extender las nociones de primera y segunda derivada al gradiente y la matriz Hessiana.
  • Adquirir agilidad en el cálculo con diversas variables, en particular la regla de la cadena.
  • Tratar y graficar aproximación de funciones.
  • Entender qué rol toma la optimización en el aprendizaje automático. Ver cuál es el planteamiento típico de ajuste de modelos.
  • Entender cuáles son las condiciones y las intuiciones para encontrar mínimos de funciones sin restricciones
  • Entender cuáles son las técnicas que se utilizan para encontrar mínimos en problemas de optimización. 
  • Ser capaz de programar el método del gradiente para resolver problemas de optimización sin restricciones
  • Entender y aplicar las condiciones de Karush-Kuhn-Tucker en problemas de optimización en la ciencia de datos.
  • Entender las diferencias en las condiciones de optimalidad entre problemas con restricciones de igualdad y desigualdad.
  • Saber formular de maneras equivalentes problemas de optimización.
  • Ser capaz de aplicar métodos numéricos de optimización.
  • Conocer las fases y la terminología básica relacionada con los algoritmos Simplex y Ramificación-Acotación.
  • Saber utilizar manualmente el algoritmo Simplex para resolver problemas sencillos de programación lineal.
  • Saber utilizar manualmente el algoritmo Ramificación-Acotación para resolver problemas sencillos de programación lineal, entera y mixta.
  • Ser capaz de utilizar un lenguaje de programación para resolver problemas de programación lineal y de programación lineal entera y mixta con un nivel de complejidad media.
  • Ser capaz de interpretar las soluciones obtenidas con la aplicación de los algoritmos Simplex y Ramificación-Acotación, tanto manualmente como con software.
  • Ser capaz de entender y clasificar un problema de optimización dado, entre las diferentes tipologías vistas a la asignatura, y definir la técnica más adecuada para resolverlo.
  • Ser capaz de desarrollar un modelo que represente, mediante funciones matemáticas, una realidad más compleja, con el fin de estudiar la gestión óptima y la optimización.
  • Saber identificar los datos necesarios para resolver un problema, las variables asociadas a las decisiones que deben tomarse, la función objetivo a optimizar, y las restricciones que delimitan las posibles soluciones. 
  • Ser capaz de presentar un problema dado y el modelo de optimización desarrollado, explicando verbalmente la conexión entre el problema y la formulación matemática, así como los diferentes elementos del modelo.

Competencias

Dentro de las memorias de Grado aprobadas por el Consejo de Universidades, las competencias específicas requeridas son las siguientes:

  • Que el alumnado haya demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
  • Que el alumnado haya desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
  • Buscar, gestionar y usar la información más adecuada para modelizar problemas concretos y aplicar adecuadamente procedimientos teóricos para su resolución de manera autónoma y creativa.
  • Uso y aplicación de las TIC en el ámbito académico y profesional.
  • Expresarse de forma escrita de forma adecuada al contexto académico y profesional.
  • Utilizar de forma combinada los fundamentos matemáticos, estadísticos y de programación para desarrollar soluciones a problemas en el ámbito de la ciencia de los datos.
  • Resumir, interpretar, presentar y contrastar de forma crítica los resultados obtenidos utilizando las herramientas de análisis y visualización más adecuadas.

Amunt

Introducción a la optimización

  • Introducción al cálculo en varias variables
  • Gradiente
  • Hessiana
  • Convexidad y ejemplos de convexidad
  • Optimización en ciencia de datos
  • Mínimos cuadrados y minimización del riesgo empírico
  • Descripción del problema de optimización


Optimización sin restricciones

  • Ejemplos en la ciencia de datos
  • Condiciones de optimalidad
  • Método del gradiente
  • Método de Newton


Optimización con restricciones

  • Ejemplos en la ciencia de datos
  • Dualidad
  • Condiciones Karush-Kuhn-Tucker
  • Métodos numéricos de optimización


Optimización lineal

  • Introducción
  • Algoritmo Simplex
  • Optimización entera
  • Algoritmo de Ramificación y Acotación


Programación matemática

  • Introducción y formulación
  • Transformaciones formales
  • Técnicas de modelización

Amunt

Guía de estudio de programación matemática PDF
Guía de estudio de optimización sin restricciones PDF
Guía de estudio del cálculo en diversas variables PDF
Modelado y optimización. Introducción a la asignatura PDF
Espacio de recursos de ciencia de datos Web
Guía de estudio de optimización lineal PDF
Guía de estudio de optimitzación con restricciones PDF
Vídeo 3: Optimización con restricciones Audiovisual
Vídeo 5: Modelaje de problemas Audiovisual
Vídeo 2: Optimización sin restricciones Audiovisual
Vídeo 4: Optimización lineal y entera Audiovisual
Vídeo 1: Introducción a la optimización convexa Audiovisual

Amunt

Garrett Grolemund. Hands-On Programming with R.

Amunt

En la UOC, la evaluación generalmente es virtual. Se estructura en torno a la evaluación continua, que incluye diferentes actividades o retos; la evaluación final, que se lleva a cabo mediante pruebas o exámenes, y el trabajo final de la titulación.

Las actividades o pruebas de evaluación pueden ser escritas y/o audiovisuales, con preguntas aleatorias, pruebas orales síncronas o asíncronas, etc., de acuerdo con lo que decida cada equipo docente. Los trabajos finales representan el cierre de un proceso formativo que implica la realización de un trabajo original y tutorizado que tiene como objetivo demostrar la adquisición competencial hecha a lo largo del programa.

Para verificar la identidad del estudiante y la autoría de las pruebas de evaluación, la UOC se reserva la potestad de aplicar diferentes sistemas de reconocimiento de la identidad y de detección del plagio. Con este objetivo, la UOC puede llevar a cabo grabación audiovisual o usar métodos o técnicas de supervisión durante la ejecución de cualquier actividad académica.

Asimismo, la UOC puede exigir al estudiante el uso de dispositivos electrónicos (micrófonos, cámaras u otras herramientas) o software específico durante la evaluación. Es responsabilidad del estudiante asegurar que estos dispositivos funcionan correctamente.

El proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de las actividades académicas. La web sobre integridad académica y plagio de la UOC contiene información al respecto.

La falta de autenticidad en la autoría o de originalidad de las pruebas de evaluación; la copia o el plagio; la suplantación de identidad; la aceptación o la obtención de cualquier actividad académica a cambio o no de una contraprestación; la colaboración, el encubrimiento o el favorecimiento de la copia, o el uso de material, software o dispositivos no autorizados en el plan docente o el enunciado de la actividad académica, incluida la inteligencia artificial y la traducción automática, entre otras, son conductas irregulares en la evaluación que pueden tener consecuencias académicas y disciplinarias graves.

Estas conductas irregulares pueden conllevar el suspenso (D/0) en las actividades evaluables definidas en el plan docente -incluidas las pruebas finales- o en la calificación final de la asignatura, ya sea porque se han utilizado materiales, software o dispositivos no autorizados durante las pruebas (como el uso de inteligencia artificial no permitida, redes sociales o buscadores de información en internet), porque se han copiado fragmentos de texto de una fuente externa (internet, apuntes, libros, artículos, trabajos o pruebas de otros estudiantes, etc.) sin la citación correspondiente, por la compraventa de actividades académicas, o porque se ha llevado a cabo cualquier otra conducta irregular.

Asimismo, y de acuerdo con la normativa académica, las conductas irregulares en la evaluación también pueden dar lugar a la incoación de un procedimiento disciplinario y a la aplicación, si procede, de la sanción que corresponda, de conformidad con lo establecido en la normativa de convivencia de la UOC.

En el marco del proceso de evaluación, la UOC se reserva la potestad de:

  • Solicitar al estudiante que acredite su identidad según lo establecido en la normativa académica.
  • Solicitar al estudiante que acredite la autoría de su trabajo a lo largo de todo el proceso de evaluación, tanto en la evaluación continua como en la evaluación final, a través de una entrevista oral síncrona, que puede ser objeto de grabación audiovisual, o por los medios establecidos por la UOC. Estos medios tienen el objetivo de verificar los conocimientos y las competencias que garanticen la identidad del estudiante. Si no es posible garantizar que el estudiante es el autor de la prueba, esta puede ser calificada con una D, en el caso de la evaluación continua, o con un suspenso, en el caso de la evaluación final.

Inteligencia artificial en el marco de la evaluación

La UOC reconoce el valor y el potencial de la inteligencia artificial (IA) en el ámbito educativo y, a su vez, pone de manifiesto los riesgos que supone si no se utiliza de forma ética, crítica y responsable. En este sentido, en cada actividad de evaluación se informará al estudiantado sobre las herramientas y los recursos de IA que se pueden utilizar y en qué condiciones. Por su parte, el estudiantado se compromete a seguir las indicaciones de la UOC a la hora de realizar las actividades de evaluación y de citar las herramientas utilizadas y, concretamente, a identificar los textos o imágenes generados por sistemas de IA, los cuales no podrá presentar como si fueran propios.

Respecto a usar o no la IA para resolver una actividad, el enunciado de las actividades de evaluación indica las limitaciones en el uso de estas herramientas. Debe tenerse en cuenta que usarlas de manera inadecuada, como por ejemplo en actividades en las que no están permitidas o no citarlas en las actividades en las que sí lo están, puede considerarse una conducta irregular en la evaluación. En caso de duda, se recomienda que, antes entregar la actividad, se haga llegar una consulta al profesorado colaborador del aula.

Amunt

La asignatura solo puede aprobarse con el seguimiento y la superación de la evaluación continua (EC). La calificación final de la asignatura es la nota obtenida en la EC.

 

Amunt