Análisis multivariante de datos Código:  M0.535    :  6
Consulta de los datos generales   Descripción   La asignatura en el conjunto del plan de estudios   Campos profesionales en el que se proyecta   Conocimientos previos   Información previa a la matrícula   Contenidos   Consulta de los recursos de aprendizaje de la UOC para la asignatura   Información adicional sobre los recursos de aprendizaje y herramientas de apoyo   Informaciones sobre la evaluación en la UOC   Consulta del modelo de evaluación  
Este es el plan docente de la asignatura para el primer semestre del curso 2024-2025. Podéis consultar si la asignatura se ofrece este semestre en el espacio del campus Más UOC / La universidad / Planes de estudios). Una vez empiece la docencia, tenéis que consultarlo en el aula. El plan docente puede estar sujeto a cambios.

Este curso está diseñado para proporcionar al estudiante un enfoque integrado, en profundidad pero aplicado, en el análisis multivariante de datos. El curso pretende proporcionar al estudiante un conjunto de herramientas para la investigación que le permitan analizar y comprender mejor los datos provenientes de experimentos donde se analizan sistemas, redes o procesos y explicar satisfactoriamente en artículos científicos los resultados obtenidos. Los temas correspondientes incluyen, entre otros, los siguientes: Regresión múltiple, ANOVA, ANCOVA, Detección de datos atípicos, Representación de Datos, Análisis de componentes principales, Análisis factorial, Análisis de conglomerados.

Amunt

Se trata de una asignatura optativa para aquellos interesados en el estudio de datos multivariantes.

Amunt

La asignatura proporciona los fundamentos necesarios para cualquier analísta de datos.

Amunt

Se recomienda tener conocimientos previos de álgebra lineal, así como de programación. Es muy recomendable ser capaz de leer textos en Inglés aunque el texto base y la asignatura se imparten en Español.

Amunt

  • Profesor Coordinador:   Dr. Agusti Solanas (http://smarttechresearch.com);  
  • Descripción: Este curso está diseñado para proporcionar al estudiante un enfoque integrado, en profundidad pero aplicado, en el análisis multivariante de datos. El curso pretende proporcionar al estudiante un conjunto de herramientas para la investigación que le permitan analizar y comprender mejor los datos provenientes de experimentos donde se analizan sistemas, redes o procesos y explicar satisfactoriamente en artículos científicos los resultados obtenidos. Los temas correspondientes incluyen, entre otros, los siguientes: Regresión múltiple, ANOVA, ANCOVA, Detección de datos atípicos, Representación de Datos, Análisis de componentes principales, Análisis factorial, Análisis de conglomerados.
  • Requisitos:  Capacidad para leer textos científicos en inglés. Conocimientos básicos de programación.
  • Material: .Apuntes, artículos científicos y libros.

Amunt

  • Introducción
    • Introducción al análisis multivariante
    • Motivación y áreas de interés
  • Repaso de Álgebra Matricial
    • Vectores
    • Matrices
    • Vectores y valores propios
    • Proyección ortogonal
    • Descripción de datos multivariantes
      • Definición y tipos de datos multivariantes
      • Medidas de centralización
      • Matriz de varianzas y covarianzas
      • Medidas globales de variabilidad
      • Variabilidad y distancia
      • Medidas de dependencia lineal
      • La matriz de precisión
      • Coeficientes de asimetría y kurtosis
  • Análisis gráfico
    • Representaciones gráficas
    • Transformaciones lineales
  • Análisis gráfico y datos atípicos
    • Transformaciones no lineales
    • Datos atípicos
  • Componentes principales
    • Planteamiento del problema
    • Cálculo de los componentes
    • Propiedades de los componentes
    • Análisis normado o con correlaciones
    • Interpretación de los componentes
  • Escalado multidimensional
    • Escalados métricos
    • Matrices compatibles con métricas euclídeas
    • Construcción de las coordenadas principales
    • Relación entre coordenadas y componentes principales
    • Biplots
  • Análisis de correspondencia
    • Definición del problema
    • Búsqueda de la mejor proyección
    • La distancia ji-cuadrado
    • Asignación de puntuaciones 
  • Análisis de conglomerados
    • Definición del problema
    • Métodos clásicos de partición
    • Métodos jerárquicos
Durante las últimas 3 semanas del curso nos centramos en consolidar los conocimientos adquiridos en el curso y en la resolución de la prueba de evaluación continua 2. También, trabajamos de forma adicional y opcional según las preferencias de cada alumno y de forma individualizada en temas complementarios: Regresión múltiple, ANOVA, ANCOVA, Análisis Factorial, Redes Neuronales Artificiales, etc.

 

Amunt

An introduction to R.

Amunt

En la UOC, la evaluación generalmente es virtual. Se estructura en torno a la evaluación continua, que incluye diferentes actividades o retos; la evaluación final, que se lleva a cabo mediante pruebas o exámenes, y el trabajo final de la titulación.

Las actividades o pruebas de evaluación pueden ser escritas y/o audiovisuales, con preguntas aleatorias, pruebas orales síncronas o asíncronas, etc., de acuerdo con lo que decida cada equipo docente. Los trabajos finales representan el cierre de un proceso formativo que implica la realización de un trabajo original y tutorizado que tiene como objetivo demostrar la adquisición competencial hecha a lo largo del programa.

Para verificar la identidad del estudiante y la autoría de las pruebas de evaluación, la UOC se reserva la potestad de aplicar diferentes sistemas de reconocimiento de la identidad y de detección del plagio. Con este objetivo, la UOC puede llevar a cabo grabación audiovisual o usar métodos o técnicas de supervisión durante la ejecución de cualquier actividad académica.

Asimismo, la UOC puede exigir al estudiante el uso de dispositivos electrónicos (micrófonos, cámaras u otras herramientas) o software específico durante la evaluación. Es responsabilidad del estudiante asegurar que estos dispositivos funcionan correctamente.

El proceso de evaluación se fundamenta en el trabajo personal del estudiante y presupone la autenticidad de la autoría y la originalidad de las actividades académicas. La web sobre integridad académica y plagio de la UOC contiene información al respecto.

La falta de autenticidad en la autoría o de originalidad de las pruebas de evaluación; la copia o el plagio; la suplantación de identidad; la aceptación o la obtención de cualquier actividad académica a cambio o no de una contraprestación; la colaboración, el encubrimiento o el favorecimiento de la copia, o el uso de material, software o dispositivos no autorizados en el plan docente o el enunciado de la actividad académica, incluida la inteligencia artificial y la traducción automática, entre otras, son conductas irregulares en la evaluación que pueden tener consecuencias académicas y disciplinarias graves.

Estas conductas irregulares pueden conllevar el suspenso (D/0) en las actividades evaluables definidas en el plan docente -incluidas las pruebas finales- o en la calificación final de la asignatura, ya sea porque se han utilizado materiales, software o dispositivos no autorizados durante las pruebas (como el uso de inteligencia artificial no permitida, redes sociales o buscadores de información en internet), porque se han copiado fragmentos de texto de una fuente externa (internet, apuntes, libros, artículos, trabajos o pruebas de otros estudiantes, etc.) sin la citación correspondiente, por la compraventa de actividades académicas, o porque se ha llevado a cabo cualquier otra conducta irregular.

Asimismo, y de acuerdo con la normativa académica, las conductas irregulares en la evaluación también pueden dar lugar a la incoación de un procedimiento disciplinario y a la aplicación, si procede, de la sanción que corresponda, de conformidad con lo establecido en la normativa de convivencia de la UOC.

En el marco del proceso de evaluación, la UOC se reserva la potestad de:

  • Solicitar al estudiante que acredite su identidad según lo establecido en la normativa académica.
  • Solicitar al estudiante que acredite la autoría de su trabajo a lo largo de todo el proceso de evaluación, tanto en la evaluación continua como en la evaluación final, a través de una entrevista oral síncrona, que puede ser objeto de grabación audiovisual, o por los medios establecidos por la UOC. Estos medios tienen el objetivo de verificar los conocimientos y las competencias que garanticen la identidad del estudiante. Si no es posible garantizar que el estudiante es el autor de la prueba, esta puede ser calificada con una D, en el caso de la evaluación continua, o con un suspenso, en el caso de la evaluación final.

Inteligencia artificial en el marco de la evaluación

La UOC reconoce el valor y el potencial de la inteligencia artificial (IA) en el ámbito educativo y, a su vez, pone de manifiesto los riesgos que supone si no se utiliza de forma ética, crítica y responsable. En este sentido, en cada actividad de evaluación se informará al estudiantado sobre las herramientas y los recursos de IA que se pueden utilizar y en qué condiciones. Por su parte, el estudiantado se compromete a seguir las indicaciones de la UOC a la hora de realizar las actividades de evaluación y de citar las herramientas utilizadas y, concretamente, a identificar los textos o imágenes generados por sistemas de IA, los cuales no podrá presentar como si fueran propios.

Respecto a usar o no la IA para resolver una actividad, el enunciado de las actividades de evaluación indica las limitaciones en el uso de estas herramientas. Debe tenerse en cuenta que usarlas de manera inadecuada, como por ejemplo en actividades en las que no están permitidas o no citarlas en las actividades en las que sí lo están, puede considerarse una conducta irregular en la evaluación. En caso de duda, se recomienda que, antes entregar la actividad, se haga llegar una consulta al profesorado colaborador del aula.

Amunt

La asignatura solo puede aprobarse con el seguimiento y la superación de la evaluación continua (EC). La calificación final de la asignatura es la nota obtenida en la EC.

 

Amunt